A Representation-Theoretic Approach to $qq$-Characters
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We raise the question of whether (a slightly generalized notion of) $qq$-characters can be constructed purely representation-theoretically. In the main example of the quantum toroidal $\mathfrak{gl}_1$ algebra, geometric engineering of adjoint matter produces an explicit vertex operator $\mathsf{RR}$ which computes certain $qq$-characters, namely Hirzebruch $\chi_y$-genera, completely analogously to how the $\mathrm{R}$-matrix $\mathsf{R}$ computes $q$-characters. We give a geometric proof of the independence of preferred direction for the refined vertex in this and more general non-toric settings.
Keywords: $qq$-characters, geometric engineering, vertex operators, Pandharipande–Thomas theory.
Mots-clés : $\mathrm{R}$-matrices
@article{SIGMA_2022_18_a89,
     author = {Henry Liu},
     title = {A {Representation-Theoretic} {Approach} to $qq${-Characters}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a89/}
}
TY  - JOUR
AU  - Henry Liu
TI  - A Representation-Theoretic Approach to $qq$-Characters
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a89/
LA  - en
ID  - SIGMA_2022_18_a89
ER  - 
%0 Journal Article
%A Henry Liu
%T A Representation-Theoretic Approach to $qq$-Characters
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a89/
%G en
%F SIGMA_2022_18_a89
Henry Liu. A Representation-Theoretic Approach to $qq$-Characters. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a89/

[1] Alexeev V., “Complete moduli in the presence of semiabelian group action”, Ann. of Math., 155 (2002), 611–708, arXiv: math.AG/9905103 | DOI

[2] Arbesfeld N., “K-theoretic Donaldson–Thomas theory and the Hilbert scheme of points on a surface”, Algebr. Geom., 8 (2021), 587–625, arXiv: 1905.04567 | DOI

[3] Awata H., Feigin B., Shiraishi J., “Quantum algebraic approach to refined topological vertex”, J. High Energy Phys., 2012:3 (2012), 041, 35 pp., arXiv: 1112.6074 | DOI

[4] Awata H., Kanno H., “Refined BPS state counting from Nekrasov's formula and Macdonald functions”, Internat. J. Modern Phys. A, 24 (2009), 2253–2306, arXiv: 0805.0191 | DOI

[5] Awata H., Kanno H., “Changing the preferred direction of the refined topological vertex”, J. Geom. Phys., 64 (2013), 91–110, arXiv: 0903.5383 | DOI

[6] Awata H., Kanno H., Mironov A., Morozov A., Morozov A., Ohkubo Y., Zenkevich Ye, “Toric Calabi–Yau threefolds as quantum integrable systems. $\mathcal R$-matrix and $\mathcal{RTT}$ relations”, J. High Energy Phys., 2016:10 (2016), 047, 49 pp., arXiv: 1608.05351 | DOI

[7] Bastian B., Hohenegger S., Iqbal A., Rey S.J., “Triality in little string theories”, Phys. Rev. D, 97 (2018), 046004, 28 pp., arXiv: 1711.07921 | DOI

[8] Calabrese J., “Donaldson–Thomas invariants and flops”, J. Reine Angew. Math., 716 (2016), 103–145, arXiv: 1111.1670 | DOI

[9] Carlsson E., Nekrasov N., Okounkov A., “Five dimensional gauge theories and vertex operators”, Mosc. Math. J., 14 (2014), 39–61, arXiv: 1308.2465 | DOI

[10] Feigin B., Jimbo M., Mukhin E., “Combinatorics of vertex operators and deformed $W$-algebra of type ${\rm D}(2, 1; \alpha)$”, Adv. Math., 403 (2022), 108331, 54 pp., arXiv: 2103.15247 | DOI

[11] Frenkel E., Mukhin E., “Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57, arXiv: math.QA/9911112 | DOI

[12] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055 | DOI

[13] Fukuda M., Ohkubo Y., Shiraishi J., “Generalized Macdonald functions on Fock tensor spaces and duality formula for changing preferred direction”, Comm. Math. Phys., 380 (2020), 1–70, arXiv: 1903.05905 | DOI

[14] Haiman M., “Macdonald polynomials and geometry”, New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., 38, Cambridge University Press, Cambridge, 1999, 207–254

[15] Iqbal A., Kashani-Poor A.K., “The vertex on a strip”, Adv. Theor. Math. Phys., 10 (2006), 317–343, arXiv: hep-th/0410174 | DOI

[16] Iqbal A., Kozçaz C., Shabbir K., “Refined topological vertex, cylindric partitions and $\rm U(1)$ adjoint theory”, Nuclear Phys. B, 838 (2010), 422–457, arXiv: 0803.2260 | DOI

[17] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI

[18] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI

[19] Kanazawa A., Lau S.C., “Local Calabi–Yau manifolds of type $\tilde{A}$ via SYZ mirror symmetry”, J. Geom. Phys., 139 (2019), 103–138, arXiv: 1605.00342 | DOI

[20] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195, arXiv: hep-th/9609239 | DOI

[21] Kononov Ya., Okounkov A., Osinenko A., “The 2-leg vertex in K-theoretic DT theory”, Comm. Math. Phys., 382 (2021), 1579–1599, arXiv: 1905.01523 | DOI

[22] Liu H., Asymptotic representations of shifted quantum affine algebras from critical K-Theory, Ph.D. Thesis, Columbia University, 2021 https://academiccommons.columbia.edu/doi/10.7916/d8-ynxy-5j49

[23] Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque, 408, 2019, x+209 pp., arXiv: 1211.1287 | DOI

[24] Morozov A., Zenkevich Y., “Decomposing Nekrasov decomposition”, J. High Energy Phys., 2016:2 (2016), 098, 45 pp., arXiv: 1510.01896 | DOI

[25] Nakajima H., “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., 14 (2001), 145–238, arXiv: math.QA/9912158 | DOI

[26] Neguţ A., Quantum algebras and cyclic quiver varieties, Ph.D. Thesis, Columbia University, 2015 https://academiccommons.columbia.edu/doi/10.7916/D8J38RGF

[27] Neguţ A., AGT relations for sheaves on surfaces, arXiv: 1711.00390

[28] Neguţ A., “The $q$-AGT-W relations via shuffle algebras”, Comm. Math. Phys., 358 (2018), 101–170, arXiv: 1608.08613 | DOI

[29] Neguţ A., “The universal sheaf as an operator”, Math. Res. Lett., 28 (2021), 1793–1840, arXiv: 2007.10496 | DOI

[30] Nekrasov N., “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, J. High Energy Phys., 2016:3 (2016), 181, 70 pp., arXiv: 1512.05388 | DOI

[31] Nekrasov N., “BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem”, Adv. Theor. Math. Phys., 21 (2017), 503–583, arXiv: 1608.07272 | DOI

[32] Nekrasov N., Okounkov A., “Membranes and sheaves”, Algebr. Geom., 3 (2016), 320–369, arXiv: 1404.2323 | DOI

[33] Oh J., Thomas R., Counting sheaves on Calabi–Yau 4-folds, I, arXiv: 2009.05542

[34] Okounkov A., “Lectures on K-theoretic computations in enumerative geometry”, Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380, arXiv: 1512.07363 | DOI

[35] Okounkov A., Smirnov A., “Quantum difference equation for Nakajima varieties”, Invent. Math., 229 (2022), 1203–1299, arXiv: 1602.09007 | DOI

[36] Pandharipande R., Thomas R.P., “The 3-fold vertex via stable pairs”, Geom. Topol., 13 (2009), 1835–1876, arXiv: 0709.3823 | DOI

[37] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225

[38] Schiffmann O., “Drinfeld realization of the elliptic Hall algebra”, J. Algebraic Combin., 35 (2012), 237–262, arXiv: 1004.2575 | DOI

[39] Smirnov A., Polynomials associated with fixed points on the instanton moduli space, arXiv: 1404.5304