Mots-clés : $\mathrm{R}$-matrices
@article{SIGMA_2022_18_a89,
author = {Henry Liu},
title = {A {Representation-Theoretic} {Approach} to $qq${-Characters}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a89/}
}
Henry Liu. A Representation-Theoretic Approach to $qq$-Characters. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a89/
[1] Alexeev V., “Complete moduli in the presence of semiabelian group action”, Ann. of Math., 155 (2002), 611–708, arXiv: math.AG/9905103 | DOI
[2] Arbesfeld N., “K-theoretic Donaldson–Thomas theory and the Hilbert scheme of points on a surface”, Algebr. Geom., 8 (2021), 587–625, arXiv: 1905.04567 | DOI
[3] Awata H., Feigin B., Shiraishi J., “Quantum algebraic approach to refined topological vertex”, J. High Energy Phys., 2012:3 (2012), 041, 35 pp., arXiv: 1112.6074 | DOI
[4] Awata H., Kanno H., “Refined BPS state counting from Nekrasov's formula and Macdonald functions”, Internat. J. Modern Phys. A, 24 (2009), 2253–2306, arXiv: 0805.0191 | DOI
[5] Awata H., Kanno H., “Changing the preferred direction of the refined topological vertex”, J. Geom. Phys., 64 (2013), 91–110, arXiv: 0903.5383 | DOI
[6] Awata H., Kanno H., Mironov A., Morozov A., Morozov A., Ohkubo Y., Zenkevich Ye, “Toric Calabi–Yau threefolds as quantum integrable systems. $\mathcal R$-matrix and $\mathcal{RTT}$ relations”, J. High Energy Phys., 2016:10 (2016), 047, 49 pp., arXiv: 1608.05351 | DOI
[7] Bastian B., Hohenegger S., Iqbal A., Rey S.J., “Triality in little string theories”, Phys. Rev. D, 97 (2018), 046004, 28 pp., arXiv: 1711.07921 | DOI
[8] Calabrese J., “Donaldson–Thomas invariants and flops”, J. Reine Angew. Math., 716 (2016), 103–145, arXiv: 1111.1670 | DOI
[9] Carlsson E., Nekrasov N., Okounkov A., “Five dimensional gauge theories and vertex operators”, Mosc. Math. J., 14 (2014), 39–61, arXiv: 1308.2465 | DOI
[10] Feigin B., Jimbo M., Mukhin E., “Combinatorics of vertex operators and deformed $W$-algebra of type ${\rm D}(2, 1; \alpha)$”, Adv. Math., 403 (2022), 108331, 54 pp., arXiv: 2103.15247 | DOI
[11] Frenkel E., Mukhin E., “Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras”, Comm. Math. Phys., 216 (2001), 23–57, arXiv: math.QA/9911112 | DOI
[12] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055 | DOI
[13] Fukuda M., Ohkubo Y., Shiraishi J., “Generalized Macdonald functions on Fock tensor spaces and duality formula for changing preferred direction”, Comm. Math. Phys., 380 (2020), 1–70, arXiv: 1903.05905 | DOI
[14] Haiman M., “Macdonald polynomials and geometry”, New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., 38, Cambridge University Press, Cambridge, 1999, 207–254
[15] Iqbal A., Kashani-Poor A.K., “The vertex on a strip”, Adv. Theor. Math. Phys., 10 (2006), 317–343, arXiv: hep-th/0410174 | DOI
[16] Iqbal A., Kozçaz C., Shabbir K., “Refined topological vertex, cylindric partitions and $\rm U(1)$ adjoint theory”, Nuclear Phys. B, 838 (2010), 422–457, arXiv: 0803.2260 | DOI
[17] Iqbal A., Kozçaz C., Vafa C., “The refined topological vertex”, J. High Energy Phys., 2009:10 (2009), 069, 58 pp., arXiv: hep-th/0701156 | DOI
[18] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI
[19] Kanazawa A., Lau S.C., “Local Calabi–Yau manifolds of type $\tilde{A}$ via SYZ mirror symmetry”, J. Geom. Phys., 139 (2019), 103–138, arXiv: 1605.00342 | DOI
[20] Katz S., Klemm A., Vafa C., “Geometric engineering of quantum field theories”, Nuclear Phys. B, 497 (1997), 173–195, arXiv: hep-th/9609239 | DOI
[21] Kononov Ya., Okounkov A., Osinenko A., “The 2-leg vertex in K-theoretic DT theory”, Comm. Math. Phys., 382 (2021), 1579–1599, arXiv: 1905.01523 | DOI
[22] Liu H., Asymptotic representations of shifted quantum affine algebras from critical K-Theory, Ph.D. Thesis, Columbia University, 2021 https://academiccommons.columbia.edu/doi/10.7916/d8-ynxy-5j49
[23] Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque, 408, 2019, x+209 pp., arXiv: 1211.1287 | DOI
[24] Morozov A., Zenkevich Y., “Decomposing Nekrasov decomposition”, J. High Energy Phys., 2016:2 (2016), 098, 45 pp., arXiv: 1510.01896 | DOI
[25] Nakajima H., “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., 14 (2001), 145–238, arXiv: math.QA/9912158 | DOI
[26] Neguţ A., Quantum algebras and cyclic quiver varieties, Ph.D. Thesis, Columbia University, 2015 https://academiccommons.columbia.edu/doi/10.7916/D8J38RGF
[27] Neguţ A., AGT relations for sheaves on surfaces, arXiv: 1711.00390
[28] Neguţ A., “The $q$-AGT-W relations via shuffle algebras”, Comm. Math. Phys., 358 (2018), 101–170, arXiv: 1608.08613 | DOI
[29] Neguţ A., “The universal sheaf as an operator”, Math. Res. Lett., 28 (2021), 1793–1840, arXiv: 2007.10496 | DOI
[30] Nekrasov N., “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, J. High Energy Phys., 2016:3 (2016), 181, 70 pp., arXiv: 1512.05388 | DOI
[31] Nekrasov N., “BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem”, Adv. Theor. Math. Phys., 21 (2017), 503–583, arXiv: 1608.07272 | DOI
[32] Nekrasov N., Okounkov A., “Membranes and sheaves”, Algebr. Geom., 3 (2016), 320–369, arXiv: 1404.2323 | DOI
[33] Oh J., Thomas R., Counting sheaves on Calabi–Yau 4-folds, I, arXiv: 2009.05542
[34] Okounkov A., “Lectures on K-theoretic computations in enumerative geometry”, Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380, arXiv: 1512.07363 | DOI
[35] Okounkov A., Smirnov A., “Quantum difference equation for Nakajima varieties”, Invent. Math., 229 (2022), 1203–1299, arXiv: 1602.09007 | DOI
[36] Pandharipande R., Thomas R.P., “The 3-fold vertex via stable pairs”, Geom. Topol., 13 (2009), 1835–1876, arXiv: 0709.3823 | DOI
[37] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225
[38] Schiffmann O., “Drinfeld realization of the elliptic Hall algebra”, J. Algebraic Combin., 35 (2012), 237–262, arXiv: 1004.2575 | DOI
[39] Smirnov A., Polynomials associated with fixed points on the instanton moduli space, arXiv: 1404.5304