Rooted Clusters for Graph LP Algebras
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

LP algebras, introduced by Lam and Pylyavskyy, are a generalization of cluster algebras. These algebras are known to have the Laurent phenomenon, but positivity remains conjectural. Graph LP algebras are finite LP algebras encoded by a graph. For the graph LP algebra defined by a tree, we define a family of clusters called rooted clusters. We prove positivity for these clusters by giving explicit formulas for each cluster variable. We also give a combinatorial interpretation for these expansions using a generalization of $T$-paths.
Keywords: Laurent phenomenon algebra, cluster algebra, graph LP algebra, $T$-path.
@article{SIGMA_2022_18_a88,
     author = {Esther Banaian and Sunita Chepuri and Elizabeth Kelley and Sylvester W. Zhang},
     title = {Rooted {Clusters} for {Graph} {LP} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a88/}
}
TY  - JOUR
AU  - Esther Banaian
AU  - Sunita Chepuri
AU  - Elizabeth Kelley
AU  - Sylvester W. Zhang
TI  - Rooted Clusters for Graph LP Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a88/
LA  - en
ID  - SIGMA_2022_18_a88
ER  - 
%0 Journal Article
%A Esther Banaian
%A Sunita Chepuri
%A Elizabeth Kelley
%A Sylvester W. Zhang
%T Rooted Clusters for Graph LP Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a88/
%G en
%F SIGMA_2022_18_a88
Esther Banaian; Sunita Chepuri; Elizabeth Kelley; Sylvester W. Zhang. Rooted Clusters for Graph LP Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a88/

[1] Bazier-Matte V., Chapelier-Laget N., Douville G., Mousavand K., Thomas H., Yildrm E., ABHY Associahedra and Newton polytopes of ${F}$-polynomials for finite type cluster algebras, arXiv: 1808.09986

[2] Bridgeland T., “Scattering diagrams, Hall algebras and stability conditions”, Algebr. Geom., 4 (2017), 523–561, arXiv: 1603.00416 | DOI

[3] Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI

[4] Chapoton F., “Enumerative properties of generalized associahedra”, Sém. Lothar. Combin., 51 (2004), B51b, 16 pp., arXiv: math.CO/0401237

[5] Chapoton F., Fomin S., Zelevinsky A., “Polytopal realizations of generalized associahedra”, Canad. Math. Bull., 45 (2002), 537–566, arXiv: math.CO/0202004 | DOI

[6] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI

[7] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm. II The intertwiner”, Algebra, Arithmetic, and Geometry: in Honor of Yu.I Manin, v. I, Progr. Math., 269, Birkhäuser Boston, Boston, MA, 2009, 655–673, arXiv: math.QA/0702398 | DOI

[8] Fomin S., Thurston D., Cluster algebras and triangulated surfaces, v. II, Mem. Amer. Math. Soc., 255, Lambda lengths, 2018, v+97 pp., arXiv: 1210.5569 | DOI

[9] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: 1210.5569 | DOI

[10] Fordy A.P., Hone A., “Discrete integrable systems and Poisson algebras from cluster maps”, Comm. Math. Phys., 325 (2014), 527–584, arXiv: 1207.6072 | DOI

[11] Franco S., “Bipartite field theories: from D-brane probes to scattering amplitudes”, J. High Energy Phys., 2012, 2012, 141, 49 pp., arXiv: 1207.0807 | DOI

[12] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Weil–Petersson forms”, Duke Math. J., 127 (2005), 291–311, arXiv: ; correction, Duke Math. J., 139 (2007), 407–409 math.QA/0309138 | DOI | DOI

[13] Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Math. Surveys Monogr., 167, Amer. Math. Soc., Providence, RI, 2010 | DOI

[14] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI

[15] Gunawan E., Musiker G., “$T$-path formula and atomic bases for cluster algebras of type $D$”, SIGMA, 11 (2015), 060, 46 pp., arXiv: 1409.3610 | DOI

[16] Ingalls C., Thomas H., “Noncrossing partitions and representations of quivers”, Compos. Math., 145 (2009), 1533–1562, arXiv: math.RT/0612219 | DOI

[17] Keller B., “Cluster algebras, quiver representations and triangulated categories”, Triangulated Categories, London Math. Soc. Lecture Note Ser., 375, Cambridge University Press, Cambridge, 2010, 76–160, arXiv: 0807.1960 | DOI

[18] Keller B., “The periodicity conjecture for pairs of Dynkin diagrams”, Ann. of Math., 177 (2013), 111–170, arXiv: 1001.1531 | DOI

[19] Lam T., Pylyavskyy P., “Laurent phenomenon algebras”, Camb. J. Math., 4 (2016), 121–162, arXiv: 1206.2611 | DOI

[20] Lam T., Pylyavskyy P., “Linear Laurent phenomenon algebras”, Int. Math. Res. Not., 2016 (2016), 3163–3203, arXiv: 1206.2612 | DOI

[21] Musiker G., Ovenhouse N., Zhang S.W., “An expansion formula for decorated super-Teichmüller spaces”, SIGMA, 17 (2021), 080, 34 pp., arXiv: 2102.09143 | DOI

[22] Musiker G., Schiffler R., “Cluster expansion formulas and perfect matchings”, J. Algebraic Combin., 32 (2010), 187–209, arXiv: 0810.3638 | DOI

[23] Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv. Math., 227 (2011), 2241–2308, arXiv: 0906.0748 | DOI

[24] Reiten I., “Tilting theory and quasitilted algebras”, Doc. Math., 3, 1998, 109–120, arXiv: 1012.6014

[25] Schiffler R., “A cluster expansion formula ($A_n$ case)”, Electron. J. Combin., 15 (2008), 64, 9 pp., arXiv: math.RT/0611956 | DOI

[26] Schiffler R., “On cluster algebras arising from unpunctured surfaces. II”, Adv. Math., 223 (2010), 1885–1923, arXiv: 0809.2593 | DOI

[27] Schiffler R., Thomas H., “On cluster algebras arising from unpunctured surfaces”, Int. Math. Res. Not., 2009 (2009), 3160–3189, arXiv: 0712.4131 | DOI