@article{SIGMA_2022_18_a84,
author = {Cameron Franc and Geoffrey Mason},
title = {Character {Vectors} of {Strongly} {Regular} {Vertex} {Operator} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a84/}
}
Cameron Franc; Geoffrey Mason. Character Vectors of Strongly Regular Vertex Operator Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a84/
[1] Anderson G., Moore G., “Rationality in conformal field theory”, Comm. Math. Phys., 117 (1988), 441–450 | DOI | MR
[2] André Y., “Sur la conjecture des $p$-courbures de Grothendieck–Katz et un problème de Dwork”, Geometric Aspects of Dwork Theory, v. I, II, Walter de Gruyter, Berlin, 2004, 55–112 | DOI | MR
[3] Arike Y., Nagatomo K., Sakai Y., “Vertex operator algebras, minimal models, and modular linear differential equations of order 4 (with an appendix by Don Zagier)”, J. Math. Soc. Japan, 70 (2018), 1347–1373 | DOI | MR
[4] Atkin A.O.L., Swinnerton-Dyer H.P.F., “Modular forms on noncongruence subgroups”, Combinatorics (Univ. California, Los Angeles, Calif., 1968), Proc. Sympos. Pure Math., XIX, Amer. Math. Soc., Providence, R.I., 1971, 1–25 | MR
[5] Bae J.B., Duan Z., Lee K., Lee S., Sarkis M., “Fermionic rational conformal field theories and modular linear differential equations”, Prog. Theor. Exp. Phys., 2021 (2021), 08B104, 59 pp., arXiv: 2010.12392 | DOI | MR
[6] Bakalov B., Kirillov Jr. A., Lectures on tensor categories and modular functors, Univ. Lecture Ser., 21, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR
[7] Bantay P., “The kernel of the modular representation and the Galois action in RCFT”, Comm. Math. Phys., 233 (2003), 423–438, arXiv: math.QA/0102149 | DOI | MR
[8] Bantay P., “Modular differential equations for characters of RCFT”, J. High Energy Phys., 2010:6 (2010), 021, 17 pp., arXiv: 1004.2579 | DOI | MR
[9] Bantay P., Gannon T., “Conformal characters and the modular representation”, J. High Energy Phys., 2006:2 (2006), 005, 18 pp., arXiv: hep-th/0512011 | DOI | MR
[10] Bantay P., Gannon T., “Vector-valued modular functions for the modular group and the hypergeometric equation”, Commun. Number Theory Phys., 1 (2007), 651–680, arXiv: 0705.2467 | DOI | MR
[11] Bauer M., Coste A., Itzykson C., Ruelle P., Comments on the links between ${\rm su}(3)$ modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards, J. Geom. Phys., 22 (1997), 134–189, arXiv: hep-th/9604104 | DOI | MR
[12] Baxter R.J., “Hard hexagons: exact solution”, J. Phys. A, 13 (1980), L61–L70 | DOI | MR
[13] Borcherds R.E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR
[14] Calegari F., Dimitrov V., Tang Y., The unbounded denominator conjecture, arXiv: 2109.09040
[15] Candelori L., Franc C., “Vector-valued modular forms and the modular orbifold of elliptic curves”, Int. J. Number Theory, 13 (2017), 39–63, arXiv: 1506.09192 | DOI | MR
[16] Cardy J.L., “Operator content of two-dimensional conformally invariant theories”, Nuclear Phys. B, 270 (1986), 186–204 | DOI | MR
[17] Codogni G., Vertex algebras and Teichmüller modular forms, arXiv: 1901.03079
[18] Cohn P.M., Algebra, v. 2, 2nd ed., John Wiley Sons, Ltd., Chichester, 1989 | MR
[19] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, 3rd ed., Springer-Verlag, New York, 1999 | DOI | MR
[20] Creutzig T., Gannon T., “Logarithmic conformal field theory, log-modular tensor categories and modular forms”, J. Phys. A, 50 (2017), 404004, 37 pp., arXiv: 1605.04630 | DOI | MR
[21] Creutzig T., Ridout D., “Logarithmic conformal field theory: beyond an introduction”, J. Phys. A, 46 (2013), 494006, 72 pp., arXiv: 1303.0847 | DOI | MR
[22] Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006 | DOI | MR
[23] Dong C., “Vertex algebras associated with even lattices”, J. Algebra, 161 (1993), 245–265 | DOI | MR
[24] Dong C., Li H., Mason G., “Twisted representations of vertex operator algebras”, Math. Ann., 310 (1998), 571–600, arXiv: q-alg/9509005 | DOI | MR
[25] Dong C., Li H., Mason G., “Modular-invariance of trace functions in orbifold theory and generalized Moonshine”, Comm. Math. Phys., 214 (2000), 1–56, arXiv: q-alg/9703016 | DOI | MR
[26] Dong C., Lin X., Ng S.H., “Congruence property in conformal field theory”, Algebra Number Theory, 9 (2015), 2121–2166, arXiv: 1201.6644 | DOI | MR
[27] Dong C., Mason G., “Holomorphic vertex operator algebras of small central charge”, Pacific J. Math., 213 (2004), 253–266, arXiv: math.QA/0203005 | DOI | MR
[28] Dong C., Mason G., “Rational vertex operator algebras and the effective central charge”, Int. Math. Res. Not., 2004 (2004), 2989–3008, arXiv: math.QA/0201318 | DOI | MR
[29] Dong C., Mason G., “Shifted vertex operator algebras”, Math. Proc. Cambridge Philos. Soc., 141 (2006), 67–80, arXiv: math.QA/0411526 | DOI | MR
[30] Eholzer W., Skoruppa N.P., “Conformal characters and theta series”, Lett. Math. Phys., 35 (1995), 197–211, arXiv: hep-th/9410077 | DOI | MR
[31] Eholzer W., Skoruppa N.P., “Modular invariance and uniqueness of conformal characters”, Comm. Math. Phys., 174 (1995), 117–136 , arXiv: http://projecteuclid.org/euclid.cmp/1104275096hep-th/9407074 | DOI
[32] Flohr M., “Operator product expansion in logarithmic conformal field theory”, Nuclear Phys. B, 634 (2002), 511–545, arXiv: hep-th/0107242 | DOI | MR
[33] Flohr M.A.I., “Bits and pieces in logarithmic conformal field theory”, Internat. J. Modern Phys. A, 18 (2003), 4497–4591, arXiv: hep-th/0111228 | DOI | MR
[34] Franc C., Mason G., “Fourier coefficients of vector-valued modular forms of dimension 2”, Canad. Math. Bull., 57 (2014), 485–494, arXiv: 1304.4288 | DOI | MR
[35] Franc C., Mason G., “Hypergeometric series, modular linear differential equations and vector-valued modular forms”, Ramanujan J., 41 (2016), 233–267, arXiv: 1503.05519 | DOI | MR
[36] Franc C., Mason G., “Three-dimensional imprimitive representations of the modular group and their associated modular forms”, J. Number Theory, 160 (2016), 186–214, arXiv: 1503.05520 | DOI | MR
[37] Franc C., Mason G., “On the structure of modules of vector-valued modular forms”, Ramanujan J., 47 (2018), 117–139, arXiv: 1509.07494 | DOI | MR
[38] Franc C., Mason G., “Classification of some vertex operator algebras of rank 3”, Algebra Number Theory, 14 (2020), 1613–1668, arXiv: 1905.07500 | DOI | MR
[39] Franc C., Mason G., “Constructions of vector-valued modular forms of rank four and level one”, Int. J. Number Theory, 16 (2020), 1111–1152, arXiv: 1810.09408 | DOI | MR
[40] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Adv. Pure Appl. Math., 134, Academic Press, Inc., Boston, MA, 1988 | MR
[41] Frenkel I.B., Huang Y.Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, 1993, viii+64 pp. | DOI | MR
[42] Fuchs J., Schweigert C., “Full logarithmic conformal field theory–an attempt at a status report”, Fortschr. Phys., 67 (2019), 1910018, 12 pp., arXiv: 1903.02838 | DOI | MR
[43] Gaberdiel M.R., “An algebraic approach to logarithmic conformal field theory”, Internat. J. Modern Phys. A, 18 (2003), 4593–4638, arXiv: hep-th/0111260 | DOI | MR
[44] Gaberdiel M.R., Hampapura H.R., Mukhi S., “Cosets of meromorphic CFTs and modular differential equations”, J. High Energy Phys., 2016:4 (2016), 156, 13 pp., arXiv: 1602.01022 | DOI
[45] Gaberdiel M.R., Keller C.A., “Modular differential equations and null vectors”, J. High Energy Phys., 2008:9 (2008), 079, 29 pp., arXiv: 0804.0489 | DOI | MR
[46] Gainutdinov A.M., “A generalization of the Verlinde formula in logarithmic conformal field theory”, Theoret. and Math. Phys., 159 (2009), 575–586 | DOI | MR
[47] Gainutdinov A.M., Jacobsen J.L., Read N., Saleur H., Vasseur R., “Logarithmic conformal field theory: a lattice approach”, J. Phys. A, 46 (2013), 494012, 34 pp., arXiv: 1303.2082 | DOI | MR
[48] Gannon T., “The theory of vector-valued modular forms for the modular group”, Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., 8, Springer, Heidelberg, 2014, 247–286, arXiv: 1310.4458 | DOI | MR
[49] Grady J.C., Lam C.H., Tener J.E., Yamauchi H., “Classification of extremal vertex operator algebras with two simple modules”, J. Math. Phys., 61 (2020), 052302, 19 pp., arXiv: 1811.02180 | DOI | MR
[50] Hampapura H.R., Mukhi S., “Two-dimensional RCFT's without Kac–Moody symmetry”, J. High Energy Phys., 2016:7 (2016), 138, 19 pp., arXiv: 1605.03314 | DOI | MR
[51] Hecke E., Mathematische Werke, 3rd ed., Vandenhoeck Ruprecht, Göttingen, 1983 | MR
[52] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg Sohn, Braunschweig, 1992 | DOI | MR
[53] Höhn G., Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, 286, Universität Bonn, Mathematisches Institut, Bonn, 1996 | MR
[54] Huang Y.Z., “Vertex operator algebras and the Verlinde conjecture”, Commun. Contemp. Math., 10 (2008), 103–154, arXiv: math.QA/0406291 | DOI | MR
[55] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[56] Kaidi J., Lin Y.H., Parra-Martinez J., “Holomorphic modular bootstrap revisited”, J. High Energy Phys., 2021:12 (2021), 151, 48 pp., arXiv: 2107.13557 | DOI | MR
[57] Kawai S., Wheater J.F., “Modular transformation and boundary states in logarithmic conformal field theory”, Phys. Lett. B, 508 (2001), 203–210, arXiv: hep-th/0103197 | DOI | MR
[58] Knopp M., Mason G., “Vector-valued modular forms and Poincaré series”, Illinois J. Math., 48 (2004), 1345–1366 | DOI | MR
[59] Lam C.H., Shimakura H., “71 holomorphic vertex operator algebras of central charge 24”, Bull. Inst. Math. Acad. Sin. (N.S.), 14, 2019, 87–118 | MR
[60] Li H.S., “Symmetric invariant bilinear forms on vertex operator algebras”, J. Pure Appl. Algebra, 96 (1994), 279–297 | DOI | MR
[61] Marks C., “Irreducible vector-valued modular forms of dimension less than six”, Illinois J. Math., 55 (2011), 1267–1297, arXiv: 1004.3019 | DOI | MR
[62] Marks C., Mason G., “Structure of the module of vector-valued modular forms”, J. Lond. Math. Soc., 82 (2010), 32–48, arXiv: 0901.4367 | DOI | MR
[63] Mason G., “Lattice subalgebras of strongly regular vertex operator algebras”, Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., 8, Springer, Heidelberg, 2014, 31–53, arXiv: 1110.0544 | DOI | MR
[64] Mason G., “Vertex rings and their Pierce bundles”, Vertex Algebras and Geometry, Contemp. Math., 711, Amer. Math. Soc., Providence, RI, 2018, 45–104, arXiv: 1707.00328 | DOI | MR
[65] Mason G., “Five not-so-easy pieces: open problems about vertex rings”, Vertex Operator Algebras, Number Theory and Related Topics, Contemp. Math., 753, Amer. Math. Soc., Providence, RI, 2020, 213–232, arXiv: 1812.06206 | DOI | MR
[66] Mason G., Nagatomo K., Sakai Y., “Vertex operator algebras of rank 2 – the Mathur–Mukhi–Sen theorem revisited”, Commun. Number Theory Phys., 15 (2021), 59–90 | DOI | MR
[67] Mason G., Tuite M., “Vertex operators and modular forms”, A Window Into Zeta and Modular Physics, Math. Sci. Res. Inst. Publ., 57, Cambridge University Press, Cambridge, 2010, 183–278, arXiv: 0909.4460 | MR
[68] Mathur S.D., Mukhi S., Sen A., “On the classification of rational conformal field theories”, Phys. Lett. B, 213 (1988), 303–308 | DOI | MR
[69] Mathur S.D., Mukhi S., Sen A., “Reconstruction of conformal field theories from modular geometry on the torus”, Nuclear Phys. B, 318 (1989), 483–540 | DOI | MR
[70] Nagatomo K., Mason G., Sakai Y., “Vertex operator algebras with central charge 8 and 16”, Vertex Operator Algebras, Number Theory and Related Topics, Contemp. Math., 753, Amer. Math. Soc., Providence, RI, 2020, 157–186, arXiv: 1812.06357 | DOI | MR
[71] Nagi J., “Operator algebra in logarithmic conformal field theory”, Phys. Rev. D, 72 (2005), 086004, 9 pp., arXiv: hep-th/0507242 | DOI | MR
[72] Ng S.H., Wang Y., Wilson S., On symmetric representations of $\mathbf{SL}_2(\mathbf{Z})$, arXiv: 2203.15701
[73] Niemeier H.V., “Definite quadratische Formen der Dimension $24$ und Diskriminante $1$”, J. Number Theory, 5 (1973), 142–178 | DOI | MR
[74] Rankin R.A., Modular forms and functions, Cambridge University Press, Cambridge – New York – Melbourne, 1977 | DOI | MR
[75] Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London, 2007 | DOI | MR
[76] Schellekens A.N., “Meromorphic $c=24$ conformal field theories”, Comm. Math. Phys., 153 (1993), 159–185, arXiv: hep-th/9205072 | DOI | MR
[77] Serre J.P., A course in arithmetic, Grad. Texts in Math., 7, Springer-Verlag, New York – Heidelberg, 1973 | DOI | MR
[78] Sloane N.J.A., The on-line encyclopedia of integer sequences, , 2020 http://oeis.org/ | MR
[79] Tuba I., Wenzl H., “Representations of the braid group $B_3$ and of ${\rm SL}(2,Z)$”, Pacific J. Math., 197 (2001), 491–510, arXiv: math.RT/9912013 | DOI | MR
[80] Vidunas R., “Dihedral Gauss hypergeometric functions”, Kyushu J. Math., 65 (2011), 141–167, arXiv: 0807.4888 | DOI | MR
[81] Zagier D., “Elliptic modular forms and their applications”, The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, 1–103 | DOI | MR
[82] Zhu Y., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302 | DOI | MR