Three Examples in the Dynamical Systems Theory
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present three explicit curious simple examples in the theory of dynamical systems. The first one is an example of two analytic diffeomorphisms $R$, $S$ of a closed two-dimensional annulus that possess the intersection property but their composition $RS$ does not ($R$ being just the rotation by $\pi/2$). The second example is that of a non-Lagrangian $n$-torus $L_0$ in the cotangent bundle $T^\ast\mathbb{T}^n$ of $\mathbb{T}^n$ ($n\geq 2$) such that $L_0$ intersects neither its images under almost all the rotations of $T^\ast\mathbb{T}^n$ nor the zero section of $T^\ast\mathbb{T}^n$. The third example is that of two one-parameter families of analytic reversible autonomous ordinary differential equations of the form $\dot{x}=f(x,y)$, $\dot{y}=\mu g(x,y)$ in the closed upper half-plane $\{y\geq 0\}$ such that for each family, the corresponding phase portraits for $0\mu1$ and for $\mu>1$ are topologically non-equivalent. The first two examples are expounded within the general context of symplectic topology.
Keywords: intersection property, non-Lagrangian tori, planar vector fields, topological non-equivalence.
@article{SIGMA_2022_18_a83,
     author = {Mikhail B. Sevryuk},
     title = {Three {Examples} in the {Dynamical} {Systems} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a83/}
}
TY  - JOUR
AU  - Mikhail B. Sevryuk
TI  - Three Examples in the Dynamical Systems Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a83/
LA  - en
ID  - SIGMA_2022_18_a83
ER  - 
%0 Journal Article
%A Mikhail B. Sevryuk
%T Three Examples in the Dynamical Systems Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a83/
%G en
%F SIGMA_2022_18_a83
Mikhail B. Sevryuk. Three Examples in the Dynamical Systems Theory. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a83/

[1] Abbondandolo A., Schlenk F., “Floer homologies, with applications”, Jahresber. Dtsch. Math.-Ver., 121 (2019), 155–238, arXiv: 1709.00297 | DOI | MR

[2] Abouzaid M., Kragh T., “Simple homotopy equivalence of nearby Lagrangians”, Acta Math., 220 (2018), 207–237, arXiv: 1603.05431 | DOI | MR

[3] Vladimir I. Arnold, “On a topological property of globally canonical maps in classical mechanics”, Collected Works, v. 1, eds. A.B. Givental, B.A. Khesin, J.E. Marsden, A.N. Varchenko, V.A. Vassiliev, O.Ya. Viro, V.M. Zakalyukin, Springer-Verlag, Berlin, 2009, 481–485 | DOI | MR | MR

[4] Arnold V.I., “First steps of symplectic topology”, Russian Math. Surveys, 41:6 (1986), 1–21 | DOI | MR

[5] Arnold V.I., “Topological problems of the theory of wave propagation”, Russian Math. Surveys, 51:1 (1996), 1–47 | DOI | MR

[6] Arnold V.I., “About Vladimir Abramovich Rokhlin”, Arnold: Swimming Against the Tide, AMS Non-Series Monographs, 86, eds. B.A. Khesin, S.L. Tabachnikov, Amer. Math. Soc., Providence, RI, 67–75 | DOI | MR

[7] Audin M., “Vladimir Igorevich Arnold and the invention of symplectic topology”, Contact and Symplectic Topology, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014, 1–25 | DOI | MR

[8] Biran P., “Geometry of symplectic intersections”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. II, Higher Ed. Press, Beijing, 2002, 241–255, arXiv: math.SG/0304260 | DOI | MR

[9] Biran P., “Lagrangian non-intersections”, Geom. Funct. Anal., 16 (2006), 279–326, arXiv: math.SG/0412110 | DOI | MR

[10] Boss V., Counterexamples and paradoxes, Lectures on Math., 12, 3rd ed., Librokom, M., 2020

[11] Chaperon M., “Quelques questions de géométrie symplectique (d'après, entre autres, Poincaré, Arnold, Conley et Zehnder)”, Astérisque, 105, 1983, 231–249 | MR

[12] Floer A., “Morse theory for Lagrangian intersections”, J. Differential Geom., 28 (1988), 513–547 | DOI | MR

[13] Gelbaum B.R., Olmsted J.M.H., Counterexamples in analysis, Dover Publications, Inc., Mineola, NY, 2003 | MR

[14] Ginzburg V.L., “Coisotropic intersections”, Duke Math. J., 140 (2007), 111–163, arXiv: math.SG/0605186 | DOI | MR

[15] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | MR

[16] Gürel B.Z., “Totally non-coisotropic displacement and its applications to Hamiltonian dynamics”, Commun. Contemp. Math., 10 (2008), 1103–1128, arXiv: math.SG/0702091 | DOI | MR

[17] Hofer H., “Lagrangian embeddings and critical point theory”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 407–462 | DOI | MR

[18] Huang P., Li X., Liu B., “Invariant curves of smooth quasi-periodic mappings”, Discrete Contin. Dyn. Syst., 38 (2018), 131–154, arXiv: 1705.08762 | DOI | MR

[19] Huang P., Li X., Liu B., “Invariant curves of almost periodic twist mappings”, J. Dynam. Differential Equations, 34 (2022), 1997–2033, arXiv: 1606.08938 | DOI | MR

[20] Laudenbach F., Sikorav J.-C., “Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent”, Invent. Math., 82 (1985), 349–357 | DOI | MR

[21] Laudenbach F., Sikorav J.-C., “Hamiltonian disjunction and limits of Lagrangian submanifolds”, Int. Math. Res. Not., 1994, 1994, 161, 8 pp. | DOI | MR

[22] Liu C., Xing J., “A new proof of Moser's theorem”, J. Appl. Anal. Comput., 12 (2022), 1679–1701 | DOI | MR

[23] Ma Z., Xu J., “A KAM theorem for quasi-periodic non-twist mappings and its application”, Discrete Contin. Dyn. Syst., 42 (2022), 3169–3185 | DOI | MR

[24] McDuff D., Salamon D., Introduction to symplectic topology, Oxf. Grad. Texts Math., 3rd ed., Oxford University Press, Oxford, 2017 | DOI | MR

[25] Moser J., “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1–20 | MR

[26] Moser J., “Remark on the paper “On invariant curves of area-preserving mappings of an annulus””, Regul. Chaotic Dyn., 6 (2001), 337–338 | DOI | MR

[27] Polterovich L., “An obstacle to non-Lagrangian intersections”, The Floer Memorial Volume, Progr. Math., 133, Birkhäuser, Basel, 1995, 575–586 | DOI | MR

[28] Rüssmann H., “On the existence of invariant curves of twist mappings of an annulus”, Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., 1007, Springer, Berlin, 1983, 677–718 | DOI | MR

[29] Sevryuk M.B., “On the composition of mappings possessing the intersection property”, Sci. Tech. Educ., 2018, no. 4, 6–9 | DOI

[30] Shafarevich I.R., Basic notions of algebra, Encyclopaedia Math. Sci., 11, Springer-Verlag, Berlin, 2005 | DOI | MR

[31] Shelukhin E., “Symplectic cohomology and a conjecture of Viterbo”, Geom. Funct. Anal. (to appear)

[32] Siegel C.L., Moser J.K., Lectures on celestial mechanics, Classics Math., Springer-Verlag, Berlin, 1995 | DOI | MR

[33] The post by the user AVK of March 5 (edited March 7), 2022, https://mathoverflow.net/questions/417435/special-topological-equivalence

[34] Weinstein A., Lectures on symplectic manifolds, CBMS Reg. Conf. Ser. Math., 29, Amer. Math. Soc., Providence, R.I. | DOI | MR

[35] Xia Z., Yu P., “A fixed point theorem for twist maps”, Discrete Contin. Dyn. Syst., 42 (2022), 4051–4059, arXiv: 2106.06374 | DOI | MR

[36] Yakovenko S.Yu., “Vladimir Igorevich Arnold: A view from the rear bench”, Arnold: Swimming Against the Tide, AMS Non-Series Monographs, 86, eds. B.A. Khesin, S.L. Tabachnikov, Amer. Math. Soc., Providence, RI, 2014, 197–203 | DOI | MR

[37] Yang L., Li X., “Existence of periodically invariant tori on resonant surfaces for twist mappings”, Discrete Contin. Dyn. Syst., 40 (2020), 1389–1409 | DOI | MR