Markovianity and the Thompson Group $F$
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that representations of the Thompson group $F$ in the automorphisms of a noncommutative probability space yield a large class of bilateral stationary noncommutative Markov processes. As a partial converse, bilateral stationary Markov processes in tensor dilation form yield representations of $F$. As an application, and building on a result of Kümmerer, we canonically associate a representation of $F$ to a bilateral stationary Markov process in classical probability.
Keywords: noncommutative stationary Markov processes, representations of Thompson group $F$.
@article{SIGMA_2022_18_a82,
     author = {Claus K\"ostler and Arundhathi Krishnan},
     title = {Markovianity and the {Thompson} {Group} $F$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a82/}
}
TY  - JOUR
AU  - Claus Köstler
AU  - Arundhathi Krishnan
TI  - Markovianity and the Thompson Group $F$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a82/
LA  - en
ID  - SIGMA_2022_18_a82
ER  - 
%0 Journal Article
%A Claus Köstler
%A Arundhathi Krishnan
%T Markovianity and the Thompson Group $F$
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a82/
%G en
%F SIGMA_2022_18_a82
Claus Köstler; Arundhathi Krishnan. Markovianity and the Thompson Group $F$. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a82/

[1] Aiello V., Jones V.F.R., “On spectral measures for certain unitary representations of R. Thompson's group $F$”, J. Funct. Anal., 280 (2021), 108777, 27 pp., arXiv: 1905.05806 | DOI | MR

[2] Anantharaman-Delaroche C., “On ergodic theorems for free group actions on noncommutative spaces”, Probab. Theory Related Fields, 135 (2006), 520–546, arXiv: math.OA/0412253 | DOI | MR

[3] Belk J., Thompson's group $F$, Ph.D. Thesis, Cornell University, 2004 http://dml.mathdoc.fr/item/0708.3609

[4] Brothier A., Jones V.F.R., “On the Haagerup and Kazhdan properties of R. Thompson's groups”, J. Group Theory, 22 (2019), 795–807, arXiv: 1805.02177 | DOI | MR

[5] Brothier A., Jones V.F.R., “Pythagorean representations of Thompson's groups”, J. Funct. Anal., 277 (2019), 2442–2469, arXiv: 1807.06215 | DOI | MR

[6] Cannon J.W., Floyd W.J., What is $\dots$ Thompson's group?, Notices Amer. Math. Soc., 58 (2011), 1112–1113 | MR

[7] Cannon J.W., Floyd W.J., Parry W.R., “Introductory notes on Richard Thompson's groups”, Enseign. Math., 42 (1996), 215–256 | MR

[8] Evans D.G., Gohm R., Köstler C., “Semi-cosimplicial objects and spreadability”, Rocky Mountain J. Math., 47 (2017), 1839–1873, arXiv: 1508.03168 | DOI | MR

[9] Gohm R., Köstler C., “Noncommutative independence from the braid group $\mathbb B_\infty$”, Comm. Math. Phys., 289 (2009), 435–482, arXiv: 0806.3691 | DOI | MR

[10] Goodman F.M., de la Harpe P., Jones V.F.R., Coxeter graphs and towers of algebras, Math. Sci. Res. Inst. Publ., 14, Springer-Verlag, New York, 1989 | DOI | MR

[11] Haagerup U., Musat M., “Factorization and dilation problems for completely positive maps on von Neumann algebras”, Comm. Math. Phys., 303 (2011), 555–594, arXiv: 1009.0778 | DOI | MR

[12] Jones V.F.R., “Some unitary representations of Thompson's groups $F$ and $T$”, J. Comb. Algebra, 1 (2017), 1–44, arXiv: 1412.7740 | DOI | MR

[13] Jones V.F.R., “A no-go theorem for the continuum limit of a periodic quantum spin chain”, Comm. Math. Phys., 357 (2018), 295–317, arXiv: 1607.08769 | DOI | MR

[14] Jones V.F.R., “Scale invariant transfer matrices and Hamiltonians”, J. Phys. A, 51 (2018), 104001, 27 pp., arXiv: 1706.00515 | DOI | MR

[15] Jones V.F.R., Sunder V.S., Introduction to subfactors, London Math. Soc. Lecture Note Ser., 234, Cambridge University Press, Cambridge, 1997 | DOI | MR

[16] Köstler C., “A noncommutative extended de Finetti theorem”, J. Funct. Anal., 258 (2010), 1073–1120, arXiv: 0806.3621 | DOI | MR

[17] Köstler C., Krishnan A., Wills S.J., Markovianity and the Thompson monoid $F^+$, arXiv: 2009.14811 | MR

[18] Kümmerer B., “Markov dilations on $W^\ast$-algebras”, J. Funct. Anal., 63 (1985), 139–177 | DOI | MR

[19] Kümmerer B., Construction and structure of Markov dilations on $W^\ast$-algebras, Habilitationsschrift, Tübingen, 1986 | MR

[20] Kümmerer B., Personal communication, 2021

[21] Kümmerer B., Schröder W., “A Markov dilation of a nonquasifree Bloch evolution”, Comm. Math. Phys., 90 (1983), 251–262 | DOI | MR

[22] Popa S., “Relative dimension, towers of projections and commuting squares of subfactors”, Pacific J. Math., 137 (1989), 181–207 | DOI | MR

[23] Takesaki M., “Conditional expectations in von Neumann algebras”, J. Funct. Anal., 9 (1972), 306–321 | DOI | MR

[24] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York – Heidelberg, 1979 | DOI | MR

[25] Takesaki M., Theory of operator algebras. II. Operator algebras and non-commutative geometry. VI, Encyclopaedia of Mathematical Sciences, 125, Springer-Verlag, Berlin, 2003 | DOI | MR

[26] Varilly J.C., “Dilation of a nonquasifree dissipative evolution”, Lett. Math. Phys., 5 (1981), 113–116 | DOI | MR

[27] Vershik A.M., “The theory of filtrations of subalgebras, standardness and independence”, Russian Math. Surveys, 72 (2017), 257–333, arXiv: 1705.06619 | DOI | MR