@article{SIGMA_2022_18_a81,
author = {W. Steven Gray},
title = {Entropy of {Generating} {Series} for {Nonlinear} {Input-Output} {Systems} and {Their} {Interconnections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/}
}
TY - JOUR AU - W. Steven Gray TI - Entropy of Generating Series for Nonlinear Input-Output Systems and Their Interconnections JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/ LA - en ID - SIGMA_2022_18_a81 ER -
W. Steven Gray. Entropy of Generating Series for Nonlinear Input-Output Systems and Their Interconnections. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/
[1] Anick D.J., “Non-commutative graded algebras and their Hilbert series”, J. Algebra, 78 (1982), 120–140 | DOI | MR
[2] Atiyah M.F., MacDonald I.G., Introduction to commutative algebra, Addison–Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1969 | MR
[3] Berstel J., Reutenauer C., Rational series and their languages, EATCS Monogr. Theoret. Comput. Sci., 12, Springer-Verlag, Berlin, 1988 | MR
[4] Caracciolo S., Radicati L.A., “Entropy ultrametric for dynamical and disordered systems”, J. Physique, 50 (1989), 2919–2930 | DOI | MR
[5] Devlin J., “Word problems related to periodic solutions of a nonautonomous system”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 127–151 | DOI | MR
[6] Devlin J., “Word problems related to derivatives of the displacement map”, Math. Proc. Cambridge Philos. Soc., 110 (1991), 569–579 | DOI | MR
[7] Downarowicz T., Entropy in dynamical systems, New Math. Monogr., 18, Cambridge University Press, Cambridge, 2011 | DOI | MR
[8] Duffaut Espinosa L.A., Interconnections of nonlinear systems driven by $L_2$-Itô stochastic process, Ph.D. Thesis, Old Dominion University, 2009 | DOI | MR
[9] Duffaut Espinosa L.A., Ebrahimi-Fard K., Gray W.S., “A combinatorial Hopf algebra for nonlinear output feedback control systems”, J. Algebra, 453 (2016), 609–643, arXiv: 1406.5396 | DOI | MR
[10] Duffaut Espinosa L.A., Gray W.S., González O.R., “On Fliess operators driven by $L_2$-Itô random processes”, Proc. 48th IEEE Conf. on Decision and Control, IEEE, Shanghai, China, 2009, 7478–7484 | DOI
[11] Ebrahimi-Fard K., Gray W.S., “Center problem, Abel equation and the Faà di Bruno Hopf algebra for output feedback”, Int. Math. Res. Not., 2017 (2017), 5415–5450, arXiv: 1507.06939 | DOI | MR
[12] Ferfera A., Combinatoire du monoïde libre appliquée à la composition et aux variations de certaines fonctionnelles issues de la théorie des systèmes, Ph.D. Thesis, University of Bordeaux I, 1979
[13] Ferfera A., “Combinatoire du monoïde libre et composition de certains systèmes non linéaires”, Astérisque, 75–76, 1980, 87–93 http://www.numdam.org/item/AST_1980__75-76__87_0
[14] Fliess M., “Sur divers produits de séries formelles”, Bull. Soc. Math. France, 102 (1974), 181–191 | DOI | MR
[15] Fliess M., “Transductions de séries formelles”, Discrete Math., 10 (1974), 57–74 | DOI | MR
[16] Fliess M., “Fonctionnelles causales non linéaires et indéterminées non commutatives”, Bull. Soc. Math. France, 109 (1981), 3–40 | DOI | MR
[17] Fliess M., “Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives”, Invent. Math., 71 (1983), 521–537 | DOI | MR
[18] Foissy L., “The Hopf algebra of Fliess operators and its dual pre-Lie algebra”, Comm. Algebra, 43 (2015), 4528–4552, arXiv: 1304.1726 | DOI | MR
[19] Gray W.S., Formal power series methods in nonlinear control theory, unpublished, 1.2 ed., 2022 http://www.ece.odu.edu/s̃gray/fps-book
[20] Gray W.S., “System identification entropy for Chen–Fliess series and their interconnections”, Proc. 2022 Allerton Conf. on Communication, Control, Computing, Allerton Park, Illinois (to appear)
[21] Gray W.S., Duffaut Espinosa L.A., Ebrahimi-Fard K., “Faà di Bruno Hopf algebra of the output feedback group for multivariable Fliess operators”, Systems Control Lett., 74 (2014), 64–73, arXiv: 1406.5378 | DOI | MR
[22] Gray W.S., Ebrahimi-Fard K., “SISO output affine feedback transformation group and its Faà di Bruno Hopf algebra”, SIAM J. Control Optim., 55 (2017), 885–912, arXiv: 1411.0222 | DOI | MR
[23] Gray W.S., Ebrahimi-Fard K., “Generating series for networks of Chen–Fliess series”, Systems Control Lett., 147 (2021), 104827, 8 pp., arXiv: 2007.00743 | DOI | MR
[24] Gray W.S., Herencia-Zapana H., Duffaut Espinosa L.A., González O.R., “Bilinear system interconnections and generating series of weighted Petri nets”, Systems Control Lett., 58 (2009), 841–848 | DOI | MR
[25] Gray W.S., Li Y., “Generating series for interconnected analytic nonlinear systems”, SIAM J. Control Optim., 44 (2005), 646–672 | DOI | MR
[26] Gray W.S., Thitsa M., “A unified approach to generating series for mixed cascades of analytic nonlinear input-output systems”, Internat. J. Control, 85 (2012), 1737–1754 | DOI | MR
[27] Gray W.S., Venkatesh G.S., “Relative degree of interconnected SISO nonlinear control systems”, Systems Control Lett., 124 (2019), 99–105 | DOI | MR
[28] Gray W.S., Wang Y., “Fliess operators on $L_p$ spaces: convergence and continuity”, Systems Control Lett., 46 (2002), 67–74 | DOI | MR
[29] Gray W.S., Wang Y., “Formal Fliess operators with applications to feedback interconnections”, Proc. 18th Inter. Symp. on the Mathematical Theory of Networks and Systems (Blacksburg, Virginia, 2008), 12 pp.
[30] Isidori A., Nonlinear control systems, Comm. Control Engrg. Ser., 3rd ed., Springer-Verlag, Berlin, 1995 | DOI | MR
[31] Jacob G., “Sur un théorème de Shamir”, Inf. Control, 27 (1975), 218–261 | DOI | MR
[32] Kawan C., Delvenne J.-C., “Network entropy and data rates required for networked control”, IEEE Trans. Control Netw. Syst., 3 (2016), 57–66, arXiv: 1409.6037 | DOI | MR
[33] Kuich W., “On the entropy of context-free languages”, Inf. Control, 16 (1970), 173–200 | DOI | MR
[34] Kuich W., Maurer H., “The structure generating function and entropy of tuple languages”, Inf. Control, 19 (1971), 195–203 | DOI | MR
[35] Kuich W., Salomaa A., “Semirings, automata, languages”, EATCS Monogr. Theoret. Comput. Sci., 5, Springer-Verlag, Berlin, 1986 | DOI | MR
[36] Liberzon D., “On topological entropy of interconnected nonlinear systems”, IEEE Control Syst. Lett., 5 (2021), 2210–2214 | DOI | MR
[37] Lind D., Marcus B., An introduction to symbolic dynamics and coding, Cambridge Math. Lib., 2nd ed., Cambridge University Press, Cambridge, 2021 | DOI | MR
[38] Lothaire M., Combinatorics on words, Cambridge Math. Lib., 2nd ed., Cambridge University Press, Cambridge, 1997 | DOI | MR
[39] Matveev A.S., Proskurnikov A.V., Pogromsky A., Fridman E., “Comprehending complexity: data-rate constraints in large-scale networks”, IEEE Trans. Automat. Control, 64 (2019), 4252–4259 | DOI | MR
[40] McLachlan R.I., Ryland B., “The algebraic entropy of classical mechanics”, J. Math. Phys., 44 (2003), 3071–3087, arXiv: math-ph/0210030 | DOI | MR
[41] Newman M.F., Schneider C., Shalev A., “The entropy of graded algebras”, J. Algebra, 223 (2000), 85–100 | DOI | MR
[42] Priess-Crampe S., Ribenboim P., “Ultrametric dynamics”, Illinois J. Math., 55 (2011), 287–303 | DOI | MR
[43] Priess-Crampe S., Ribenboim P., “The approximation to a fixed point”, J. Fixed Point Theory Appl., 14 (2013), 41–53, arXiv: 1307.6431 | DOI | MR
[44] Salomaa A., Soittola M., Automata-theoretic aspects of formal power series, Monogr. Comput. Sci., Springer-Verlag, New York – Heidelberg, 1978 | DOI | MR
[45] Savkin A.V., “Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control”, Automatica, 42 (2006), 51–62 | DOI | MR
[46] Schneider F.M., Borchmann D., “Topological entropy of formal languages”, Semigroup Forum, 94 (2017), 556–581, arXiv: 1507.03393 | DOI | MR
[47] Shannon C.E., “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423 | DOI | MR
[48] Sloane N.J.A., The on-line encyclopedia of integer sequences https://oeis.org | MR
[49] Smith C., Enumeration of the distinct shuffles of permutations, Ph.D. Thesis, Harvard University, 2009 https://www.proquest.com/docview/304890446
[50] Thitsa M., Gray W.S., “On the radius of convergence of interconnected analytic nonlinear input-output systems”, SIAM J. Control Optim., 50 (2012), 2786–2813 | DOI | MR
[51] Tomar M.S., Zamani M., “Compositional quantification of invariance feedback entropy for networks of uncertain control systems”, IEEE Control Syst. Lett., 4 (2020), 827–832 | DOI | MR
[52] Venkatesh G.S., Wiener–Fliess composition of formal power series: additive static feedback and shuffle rational series, Ph.D. Thesis, Old Dominion University, 2021 | DOI
[53] Venkatesh G.S., Gray W.S., “Formal power series approach to nonlinear systems with static output feedback”, Internat. J. Control (to appear) , arXiv: 2110.10034 | DOI
[54] Wang Y., Algebraic differential equations and nonlinear control systems, Ph.D. Thesis, Rutgers University, 1990 https://www.proquest.com/docview/303872790
[55] Winter-Arboleda I.M., Gray W.S., Duffaut Espinosa L.A., “Fractional Fliess operators: two approaches”, Proc. 49th Conf. on Information Sciences and Systems, IEEE, Baltimore, Maryland, 2015, 6 pp. | DOI
[56] Young L.-S., “Entropy in dynamical systems”, Entropy, Princeton Ser. Appl. Math., Princeton University Press, Princeton, New Jersey, 2003, 313–327 | MR
[57] Zames G., “On the metric complexity of causal linear systems: $\varepsilon $-entropy and $\varepsilon $-dimension for continuous time”, IEEE Trans. Automat. Control, 24 (1979), 222–230 | DOI | MR