Entropy of Generating Series for Nonlinear Input-Output Systems and Their Interconnections
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper has two main objectives. The first is to introduce a notion of entropy that is well suited for the analysis of nonlinear input-output systems that have a Chen–Fliess series representation. The latter is defined in terms of its generating series over a noncommutative alphabet. The idea is to assign an entropy to a generating series as an element of a graded vector space. The second objective is to describe the entropy of generating series originating from interconnected systems of Chen–Fliess series that arise in the context of control theory. It is shown that one set of interconnections can never increase entropy as defined here, while a second set has the potential to do so. The paper concludes with a brief introduction to an entropy ultrametric space and some open questions.
Keywords: Chen–Fliess series, formal power series, entropy, nonlinear control theory.
@article{SIGMA_2022_18_a81,
     author = {W. Steven Gray},
     title = {Entropy of {Generating} {Series} for {Nonlinear} {Input-Output} {Systems} and {Their} {Interconnections}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/}
}
TY  - JOUR
AU  - W. Steven Gray
TI  - Entropy of Generating Series for Nonlinear Input-Output Systems and Their Interconnections
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/
LA  - en
ID  - SIGMA_2022_18_a81
ER  - 
%0 Journal Article
%A W. Steven Gray
%T Entropy of Generating Series for Nonlinear Input-Output Systems and Their Interconnections
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/
%G en
%F SIGMA_2022_18_a81
W. Steven Gray. Entropy of Generating Series for Nonlinear Input-Output Systems and Their Interconnections. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a81/

[1] Anick D.J., “Non-commutative graded algebras and their Hilbert series”, J. Algebra, 78 (1982), 120–140 | DOI | MR

[2] Atiyah M.F., MacDonald I.G., Introduction to commutative algebra, Addison–Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1969 | MR

[3] Berstel J., Reutenauer C., Rational series and their languages, EATCS Monogr. Theoret. Comput. Sci., 12, Springer-Verlag, Berlin, 1988 | MR

[4] Caracciolo S., Radicati L.A., “Entropy ultrametric for dynamical and disordered systems”, J. Physique, 50 (1989), 2919–2930 | DOI | MR

[5] Devlin J., “Word problems related to periodic solutions of a nonautonomous system”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 127–151 | DOI | MR

[6] Devlin J., “Word problems related to derivatives of the displacement map”, Math. Proc. Cambridge Philos. Soc., 110 (1991), 569–579 | DOI | MR

[7] Downarowicz T., Entropy in dynamical systems, New Math. Monogr., 18, Cambridge University Press, Cambridge, 2011 | DOI | MR

[8] Duffaut Espinosa L.A., Interconnections of nonlinear systems driven by $L_2$-Itô stochastic process, Ph.D. Thesis, Old Dominion University, 2009 | DOI | MR

[9] Duffaut Espinosa L.A., Ebrahimi-Fard K., Gray W.S., “A combinatorial Hopf algebra for nonlinear output feedback control systems”, J. Algebra, 453 (2016), 609–643, arXiv: 1406.5396 | DOI | MR

[10] Duffaut Espinosa L.A., Gray W.S., González O.R., “On Fliess operators driven by $L_2$-Itô random processes”, Proc. 48th IEEE Conf. on Decision and Control, IEEE, Shanghai, China, 2009, 7478–7484 | DOI

[11] Ebrahimi-Fard K., Gray W.S., “Center problem, Abel equation and the Faà di Bruno Hopf algebra for output feedback”, Int. Math. Res. Not., 2017 (2017), 5415–5450, arXiv: 1507.06939 | DOI | MR

[12] Ferfera A., Combinatoire du monoïde libre appliquée à la composition et aux variations de certaines fonctionnelles issues de la théorie des systèmes, Ph.D. Thesis, University of Bordeaux I, 1979

[13] Ferfera A., “Combinatoire du monoïde libre et composition de certains systèmes non linéaires”, Astérisque, 75–76, 1980, 87–93 http://www.numdam.org/item/AST_1980__75-76__87_0

[14] Fliess M., “Sur divers produits de séries formelles”, Bull. Soc. Math. France, 102 (1974), 181–191 | DOI | MR

[15] Fliess M., “Transductions de séries formelles”, Discrete Math., 10 (1974), 57–74 | DOI | MR

[16] Fliess M., “Fonctionnelles causales non linéaires et indéterminées non commutatives”, Bull. Soc. Math. France, 109 (1981), 3–40 | DOI | MR

[17] Fliess M., “Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives”, Invent. Math., 71 (1983), 521–537 | DOI | MR

[18] Foissy L., “The Hopf algebra of Fliess operators and its dual pre-Lie algebra”, Comm. Algebra, 43 (2015), 4528–4552, arXiv: 1304.1726 | DOI | MR

[19] Gray W.S., Formal power series methods in nonlinear control theory, unpublished, 1.2 ed., 2022 http://www.ece.odu.edu/s̃gray/fps-book

[20] Gray W.S., “System identification entropy for Chen–Fliess series and their interconnections”, Proc. 2022 Allerton Conf. on Communication, Control, Computing, Allerton Park, Illinois (to appear)

[21] Gray W.S., Duffaut Espinosa L.A., Ebrahimi-Fard K., “Faà di Bruno Hopf algebra of the output feedback group for multivariable Fliess operators”, Systems Control Lett., 74 (2014), 64–73, arXiv: 1406.5378 | DOI | MR

[22] Gray W.S., Ebrahimi-Fard K., “SISO output affine feedback transformation group and its Faà di Bruno Hopf algebra”, SIAM J. Control Optim., 55 (2017), 885–912, arXiv: 1411.0222 | DOI | MR

[23] Gray W.S., Ebrahimi-Fard K., “Generating series for networks of Chen–Fliess series”, Systems Control Lett., 147 (2021), 104827, 8 pp., arXiv: 2007.00743 | DOI | MR

[24] Gray W.S., Herencia-Zapana H., Duffaut Espinosa L.A., González O.R., “Bilinear system interconnections and generating series of weighted Petri nets”, Systems Control Lett., 58 (2009), 841–848 | DOI | MR

[25] Gray W.S., Li Y., “Generating series for interconnected analytic nonlinear systems”, SIAM J. Control Optim., 44 (2005), 646–672 | DOI | MR

[26] Gray W.S., Thitsa M., “A unified approach to generating series for mixed cascades of analytic nonlinear input-output systems”, Internat. J. Control, 85 (2012), 1737–1754 | DOI | MR

[27] Gray W.S., Venkatesh G.S., “Relative degree of interconnected SISO nonlinear control systems”, Systems Control Lett., 124 (2019), 99–105 | DOI | MR

[28] Gray W.S., Wang Y., “Fliess operators on $L_p$ spaces: convergence and continuity”, Systems Control Lett., 46 (2002), 67–74 | DOI | MR

[29] Gray W.S., Wang Y., “Formal Fliess operators with applications to feedback interconnections”, Proc. 18th Inter. Symp. on the Mathematical Theory of Networks and Systems (Blacksburg, Virginia, 2008), 12 pp.

[30] Isidori A., Nonlinear control systems, Comm. Control Engrg. Ser., 3rd ed., Springer-Verlag, Berlin, 1995 | DOI | MR

[31] Jacob G., “Sur un théorème de Shamir”, Inf. Control, 27 (1975), 218–261 | DOI | MR

[32] Kawan C., Delvenne J.-C., “Network entropy and data rates required for networked control”, IEEE Trans. Control Netw. Syst., 3 (2016), 57–66, arXiv: 1409.6037 | DOI | MR

[33] Kuich W., “On the entropy of context-free languages”, Inf. Control, 16 (1970), 173–200 | DOI | MR

[34] Kuich W., Maurer H., “The structure generating function and entropy of tuple languages”, Inf. Control, 19 (1971), 195–203 | DOI | MR

[35] Kuich W., Salomaa A., “Semirings, automata, languages”, EATCS Monogr. Theoret. Comput. Sci., 5, Springer-Verlag, Berlin, 1986 | DOI | MR

[36] Liberzon D., “On topological entropy of interconnected nonlinear systems”, IEEE Control Syst. Lett., 5 (2021), 2210–2214 | DOI | MR

[37] Lind D., Marcus B., An introduction to symbolic dynamics and coding, Cambridge Math. Lib., 2nd ed., Cambridge University Press, Cambridge, 2021 | DOI | MR

[38] Lothaire M., Combinatorics on words, Cambridge Math. Lib., 2nd ed., Cambridge University Press, Cambridge, 1997 | DOI | MR

[39] Matveev A.S., Proskurnikov A.V., Pogromsky A., Fridman E., “Comprehending complexity: data-rate constraints in large-scale networks”, IEEE Trans. Automat. Control, 64 (2019), 4252–4259 | DOI | MR

[40] McLachlan R.I., Ryland B., “The algebraic entropy of classical mechanics”, J. Math. Phys., 44 (2003), 3071–3087, arXiv: math-ph/0210030 | DOI | MR

[41] Newman M.F., Schneider C., Shalev A., “The entropy of graded algebras”, J. Algebra, 223 (2000), 85–100 | DOI | MR

[42] Priess-Crampe S., Ribenboim P., “Ultrametric dynamics”, Illinois J. Math., 55 (2011), 287–303 | DOI | MR

[43] Priess-Crampe S., Ribenboim P., “The approximation to a fixed point”, J. Fixed Point Theory Appl., 14 (2013), 41–53, arXiv: 1307.6431 | DOI | MR

[44] Salomaa A., Soittola M., Automata-theoretic aspects of formal power series, Monogr. Comput. Sci., Springer-Verlag, New York – Heidelberg, 1978 | DOI | MR

[45] Savkin A.V., “Analysis and synthesis of networked control systems: topological entropy, observability, robustness and optimal control”, Automatica, 42 (2006), 51–62 | DOI | MR

[46] Schneider F.M., Borchmann D., “Topological entropy of formal languages”, Semigroup Forum, 94 (2017), 556–581, arXiv: 1507.03393 | DOI | MR

[47] Shannon C.E., “A mathematical theory of communication”, Bell System Tech. J., 27 (1948), 379–423 | DOI | MR

[48] Sloane N.J.A., The on-line encyclopedia of integer sequences https://oeis.org | MR

[49] Smith C., Enumeration of the distinct shuffles of permutations, Ph.D. Thesis, Harvard University, 2009 https://www.proquest.com/docview/304890446

[50] Thitsa M., Gray W.S., “On the radius of convergence of interconnected analytic nonlinear input-output systems”, SIAM J. Control Optim., 50 (2012), 2786–2813 | DOI | MR

[51] Tomar M.S., Zamani M., “Compositional quantification of invariance feedback entropy for networks of uncertain control systems”, IEEE Control Syst. Lett., 4 (2020), 827–832 | DOI | MR

[52] Venkatesh G.S., Wiener–Fliess composition of formal power series: additive static feedback and shuffle rational series, Ph.D. Thesis, Old Dominion University, 2021 | DOI

[53] Venkatesh G.S., Gray W.S., “Formal power series approach to nonlinear systems with static output feedback”, Internat. J. Control (to appear) , arXiv: 2110.10034 | DOI

[54] Wang Y., Algebraic differential equations and nonlinear control systems, Ph.D. Thesis, Rutgers University, 1990 https://www.proquest.com/docview/303872790

[55] Winter-Arboleda I.M., Gray W.S., Duffaut Espinosa L.A., “Fractional Fliess operators: two approaches”, Proc. 49th Conf. on Information Sciences and Systems, IEEE, Baltimore, Maryland, 2015, 6 pp. | DOI

[56] Young L.-S., “Entropy in dynamical systems”, Entropy, Princeton Ser. Appl. Math., Princeton University Press, Princeton, New Jersey, 2003, 313–327 | MR

[57] Zames G., “On the metric complexity of causal linear systems: $\varepsilon $-entropy and $\varepsilon $-dimension for continuous time”, IEEE Trans. Automat. Control, 24 (1979), 222–230 | DOI | MR