Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the difference analog of the quotient differential operator from [Tarasov V., Uvarov F., Lett. Math. Phys. 110 (2020), 3375–3400, arXiv:1907.02117]. Starting with a space of quasi-exponentials $W=\langle \alpha_{i}^{x}p_{ij}(x),\, i=1,\ldots, n,\, j=1,\ldots, n_{i}\rangle$, where $\alpha_{i}\in\mathbb{C}^{*}$ and $p_{ij}(x)$ are polynomials, we consider the formal conjugate $\check{S}^{\dagger}_{W}$ of the quotient difference operator $\check{S}_{W}$ satisfying $\widehat{S} =\check{S}_{W}S_{W}$. Here, $S_{W}$ is a linear difference operator of order $\dim W$ annihilating $W$, and $\widehat{S}$ is a linear difference operator with constant coefficients depending on $\alpha_{i}$ and $\deg p_{ij}(x)$ only. We construct a space of quasi-exponentials of dimension $\mathrm{ord}\, \check{S}^{\dagger}_{W}$, which is annihilated by $\check{S}^{\dagger}_{W}$ and describe its basis and discrete exponents. We also consider a similar construction for differential operators associated with spaces of quasi-polynomials, which are linear combinations of functions of the form $x^{z}q(x)$, where $z\in\mathbb C$ and $q(x)$ is a polynomial. Combining our results with the results on the bispectral duality obtained in [Mukhin E., Tarasov V., Varchenko A., Adv. Math. 218 (2008), 216–265, arXiv:math.QA/0605172], we relate the construction of the quotient difference operator to the $(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality of the trigonometric Gaudin Hamiltonians and trigonometric dynamical Hamiltonians acting on the space of polynomials in $kn$ anticommuting variables.
Keywords: difference operator, $(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality, trigonometric Gaudin model, Bethe ansatz.
@article{SIGMA_2022_18_a80,
     author = {Filipp Uvarov},
     title = {Difference {Operators} and {Duality} for {Trigonometric} {Gaudin} and {Dynamical} {Hamiltonians}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a80/}
}
TY  - JOUR
AU  - Filipp Uvarov
TI  - Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a80/
LA  - en
ID  - SIGMA_2022_18_a80
ER  - 
%0 Journal Article
%A Filipp Uvarov
%T Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a80/
%G en
%F SIGMA_2022_18_a80
Filipp Uvarov. Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a80/

[1] Jurčo B., “Classical Yang–Baxter equations and quantum integrable systems”, J. Math. Phys., 30 (1989), 1289–1293 | DOI | MR

[2] Markov Y., Varchenko A., “Hypergeometric solutions of trigonometric KZ equations satisfy dynamical difference equations”, Adv. Math., 166 (2002), 100–147, arXiv: math.QA/0103226 | DOI | MR

[3] Molev A., Ragoucy E., “Higher-order Hamiltonians for the trigonometric Gaudin model”, Lett. Math. Phys., 109 (2019), 2035–2048, arXiv: 1802.06499 | DOI | MR

[4] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006 (2006), P08002, 44 pp., arXiv: math.QA/0605015 | DOI | MR

[5] Mukhin E., Tarasov V., Varchenko A., “Bispectral and $(\mathfrak{gl}_{N},\mathfrak{gl}_{M})$ dualities”, Funct. Anal. Other Math., 1 (2006), 47–69, arXiv: math.QA/0510364 | DOI | MR

[6] Mukhin E., Tarasov V., Varchenko A., “Bispectral and $({\mathfrak{gl}}_N,{\mathfrak{gl}}_M)$ dualities, discrete versus differential”, Adv. Math., 218 (2008), 216–265, arXiv: math.QA/0605172 | DOI | MR

[7] Mukhin E., Tarasov V., Varchenko A., “A generalization of the Capelli identity”, Algebra, Arithmetic, and Geometry: in Honor of Yu.I Manin, v. II, Progr. Math., 270, Birkhäuser Boston, Boston, MA, 2009, 383–398, arXiv: math.QA/0610799 | DOI | MR

[8] Mukhin E., Varchenko A., “Solutions to the $XXX$ type Bethe ansatz equations and flag varieties”, Cent. Eur. J. Math., 1 (2003), 238–271, arXiv: math.QA/0211321 | DOI | MR

[9] Mukhin E., Varchenko A., “Quasi-polynomials and the Bethe ansatz”, Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry, 2008, 385–420, arXiv: math.QA/0604048 | DOI | MR

[10] Reshetikhin N., Varchenko A., “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, Topology, Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 293–322, arXiv: hep-th/9402126 | MR

[11] Tarasov V., Uvarov F., “Duality for Bethe algebras acting on polynomials in anticommuting variables”, Lett. Math. Phys., 110 (2020), 3375–3400, arXiv: 1907.02117 | DOI | MR

[12] Tarasov V., Uvarov F., “Duality for Knizhnik–Zamolodchikov and dynamical operators”, SIGMA, 16 (2020), 035, 10 pp., arXiv: 1904.07309 | DOI | MR

[13] Tarasov V., Varchenko A., “Duality for Knizhnik–Zamolodchikov and dynamical equations”, Acta Appl. Math., 73 (2002), 141–154, arXiv: math.QA/0112005 | DOI | MR

[14] Tarasov V., Varchenko A., “Dynamical differential equations compatible with rational qKZ equations”, Lett. Math. Phys., 71 (2005), 101–108, arXiv: math.QA/0403416 | DOI | MR