Mots-clés : quantization
@article{SIGMA_2022_18_a8,
author = {Daniil Klyuev},
title = {Twisted {Traces} and {Positive} {Forms} on {Generalized} $q${-Weyl} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a8/}
}
Daniil Klyuev. Twisted Traces and Positive Forms on Generalized $q$-Weyl Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a8/
[1] Bavula V. V., “Generalized Weyl algebras and their representations”, St. Petersburg Math. J., 4 (1993), 71–92 | MR
[2] Beem C., Peelaers W., Rastelli L., “Deformation quantization and superconformal symmetry in three dimensions”, Comm. Math. Phys., 354 (2017), 345–392, arXiv: 1601.05378 | DOI | MR | Zbl
[3] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch operators and mirror symmetry in three dimensions”, J. High Energy Phys., 2018:4 (2018), 037, 111 pp., arXiv: 1712.09384 | DOI | MR
[4] Dedushenko M., Gaiotto D., “Algebras, traces, and boundary correlators in ${\mathcal N}=4$ SYM”, J. High Energy Phys., 2021:12 (2021), 050, 62 pp., arXiv: 2009.11197 | DOI | MR
[5] Dedushenko M., Pufu S. S., Yacoby R., “A one-dimensional theory for Higgs branch operators”, J. High Energy Phys., 2018:3 (2018), 138, 83 pp., arXiv: 1610.00740 | DOI | MR | Zbl
[6] Etingof P., Klyuev D., Rains E., Stryker D., “Twisted traces and positive forms on quantized Kleinian singularities of type A”, SIGMA, 17 (2021), 029, 31 pp. | DOI | MR | Zbl
[7] Etingof P., Stryker D., “Short star-products for filtered quantizations, I”, SIGMA, 16 (2020), 014, 28 pp., arXiv: 1909.13588 | DOI | MR | Zbl
[8] Klyuev D., On unitarizable Harish-Chandra bimodules for deformations of Kleinian singularities, arXiv: 2003.11508
[9] Klyuev D., Generalized star-products and unitarizability of bimodules over deformations and $q$-deformations of Kleinian singularities of type A, in preparation
[10] Mumford D., Tata lectures on theta. I, Progress in Mathematics, 28, Birkhäuser Boston, Inc., Boston, MA, 1983 | DOI | MR | Zbl
[11] Pusz W., “Irreducible unitary representations of quantum Lorentz group”, Comm. Math. Phys., 152 (1993), 591–626 | DOI | MR | Zbl