Twisted Traces and Positive Forms on Generalized $q$-Weyl Algebras
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal{A}$ be a generalized $q$-Weyl algebra, it is generated by $u$, $v$, $Z$, $Z^{-1}$ with relations $ZuZ^{-1}=q^2u$, $ZvZ^{-1}=q^{-2}v$, $uv=P\big(q^{-1}Z\big)$, $vu=P(qZ)$, where $P$ is a Laurent polynomial. A Hermitian form $(\cdot,\cdot)$ on $\mathcal{A}$ is called invariant if $(Za,b)=\big(a,bZ^{-1}\big)$, $(ua,b)=(a,sbv)$, $(va,b)=\big(a,s^{-1}bu\big)$ for some $s\in \mathbb{C}$ with $|s|=1$ and all $a,b\in \mathcal{A}$. In this paper we classify positive definite invariant Hermitian forms on generalized $q$-Weyl algebras.
Keywords: trace, inner product, star-product.
Mots-clés : quantization
@article{SIGMA_2022_18_a8,
     author = {Daniil Klyuev},
     title = {Twisted {Traces} and {Positive} {Forms} on {Generalized} $q${-Weyl} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a8/}
}
TY  - JOUR
AU  - Daniil Klyuev
TI  - Twisted Traces and Positive Forms on Generalized $q$-Weyl Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a8/
LA  - en
ID  - SIGMA_2022_18_a8
ER  - 
%0 Journal Article
%A Daniil Klyuev
%T Twisted Traces and Positive Forms on Generalized $q$-Weyl Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a8/
%G en
%F SIGMA_2022_18_a8
Daniil Klyuev. Twisted Traces and Positive Forms on Generalized $q$-Weyl Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a8/

[1] Bavula V. V., “Generalized Weyl algebras and their representations”, St. Petersburg Math. J., 4 (1993), 71–92 | MR

[2] Beem C., Peelaers W., Rastelli L., “Deformation quantization and superconformal symmetry in three dimensions”, Comm. Math. Phys., 354 (2017), 345–392, arXiv: 1601.05378 | DOI | MR | Zbl

[3] Dedushenko M., Fan Y., Pufu S. S., Yacoby R., “Coulomb branch operators and mirror symmetry in three dimensions”, J. High Energy Phys., 2018:4 (2018), 037, 111 pp., arXiv: 1712.09384 | DOI | MR

[4] Dedushenko M., Gaiotto D., “Algebras, traces, and boundary correlators in ${\mathcal N}=4$ SYM”, J. High Energy Phys., 2021:12 (2021), 050, 62 pp., arXiv: 2009.11197 | DOI | MR

[5] Dedushenko M., Pufu S. S., Yacoby R., “A one-dimensional theory for Higgs branch operators”, J. High Energy Phys., 2018:3 (2018), 138, 83 pp., arXiv: 1610.00740 | DOI | MR | Zbl

[6] Etingof P., Klyuev D., Rains E., Stryker D., “Twisted traces and positive forms on quantized Kleinian singularities of type A”, SIGMA, 17 (2021), 029, 31 pp. | DOI | MR | Zbl

[7] Etingof P., Stryker D., “Short star-products for filtered quantizations, I”, SIGMA, 16 (2020), 014, 28 pp., arXiv: 1909.13588 | DOI | MR | Zbl

[8] Klyuev D., On unitarizable Harish-Chandra bimodules for deformations of Kleinian singularities, arXiv: 2003.11508

[9] Klyuev D., Generalized star-products and unitarizability of bimodules over deformations and $q$-deformations of Kleinian singularities of type A, in preparation

[10] Mumford D., Tata lectures on theta. I, Progress in Mathematics, 28, Birkhäuser Boston, Inc., Boston, MA, 1983 | DOI | MR | Zbl

[11] Pusz W., “Irreducible unitary representations of quantum Lorentz group”, Comm. Math. Phys., 152 (1993), 591–626 | DOI | MR | Zbl