Mots-clés : connection matrices
@article{SIGMA_2022_18_a79,
author = {Takahiko Nobukawa},
title = {Connection {Problem} for an {Extension} of $q${-Hypergeometric} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a79/}
}
Takahiko Nobukawa. Connection Problem for an Extension of $q$-Hypergeometric Systems. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a79/
[1] Andrews G.E., “Summations and transformations for basic Appell series”, J. London Math. Soc., 4 (1972), 618–622 | DOI | MR
[2] Aomoto K., “A note on holonomic $q$-difference systems”, Algebraic Analysis, v. I, Academic Press, Boston, MA, 1988, 25–28 | DOI | MR
[3] Aomoto K., “A normal form of a holonomic $q$-difference system and its application to $BC_1$ type”, Int. J. Pure Appl. Math., 50 (2009), 85–95 | MR
[4] Aomoto K., Kato Y., Mimachi K., “A solution of the Yang–Baxter equation as connection coefficients of a holonomic $q$-difference system”, Int. Math. Res. Not., 1992 (1992), 7–15 | DOI | MR
[5] Appell P., “Sur les séries hypergéométriques de deux variables et sur des équations différentielles linéaires simultanees aux dérivées partielles”, C. R. Acad. Soi. Paris, 90 (1880), 296–298 | MR
[6] Erdélyi A., “Hypergeometric functions of two variables”, Acta Math., 83 (1950), 131–164 | DOI | MR
[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR
[8] Gelfand I.M., Graev M.I., “GG functions and their relations to general hypergeometric functions”, Lett. Math. Phys., 50 (1999), 1–27 | DOI | MR
[9] Gelfand I.M., Zelevinsky A.V., Kapranov M.M., “Hypergeometric functions and toric varieties”, Funct. Anal. Appl., 23 (1989), 94–106 | DOI | MR
[10] Hahn W., “Beiträge zur Theorie der Heineschen Reihen. Die $24$ Integrale der Hypergeometrischen $q$-Differenzengleichung. Das $q$-Analogon der Laplace-Transformation”, Math. Nachr., 2 (1949), 340–379 | DOI | MR
[11] Jimbo M., Quantum groups and the Yang–Baxter equation, Maruzen shuppan, 1990 (in Japanese) | MR
[12] Jimbo M., Miwa T., Okado M., “Solvable lattice models related to the vector representation of classical simple Lie algebras”, Comm. Math. Phys., 116 (1988), 507–525 | DOI | MR
[13] Konno H., “Elliptic weight functions and elliptic $q$-KZ equation”, J. Integrable Syst., 2 (2017), xyx011, 43 pp., arXiv: 1706.07630 | DOI | MR
[14] Le Vavasseur R., “Sur le système d'équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables $F_1(\alpha, \beta, \beta',\gamma; x,y)$”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 7 (1893), 121–205 | MR
[15] Matsubara-Heo S.-J., “Global analysis of GG systems”, Int. Math. Res. Not., 2022 (2022), 14923–14963, arXiv: 2010.03398 | DOI | MR
[16] Mimachi K., “Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan–Pochhammer type”, Nagoya Math. J., 116 (1989), 149–161 | DOI | MR
[17] Mimachi K., “Connection formulas related with Appell's $F_{1}$ and Lauricella's $F_{D}$ functions”, Proceedings of the Symposium on Representation Theory, J-STAGE, Japan, 2018, 142–159 | DOI | MR
[18] Olsson P.O.M., “Integration of the partial differential equations for the hypergeometric functions $F_{1}$ and $F_{D}$ of two and more variables”, J. Math. Phys., 5 (1964), 420–430 | DOI | MR
[19] Ormerod C.M., Rains E.M., “An elliptic Garnier system”, Comm. Math. Phys., 355 (2017), 741–766, arXiv: 1607.07831 | DOI | MR
[20] Park K., “A certain generalization of $q$-hypergeometric functions and their related monodromy preserving deformation”, J. Integrable Syst., 3 (2018), xyy019, 14 pp., arXiv: 1804.08921 | DOI | MR
[21] Park K., A certain generalization of $q$-hypergeometric functions and their related monodromy preserving deformation II, arXiv: 2005.04992 | MR
[22] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR
[23] Thomae J., “Les séries Heinéennes supérieures, ou les séries de la forme”, Ann. Mat. Pura Appl., 4 (1870), 105–138 | DOI
[24] Tsuda T., “Hypergeometric solution of a certain polynomial Hamiltonian system of isomonodromy type”, Q. J. Math., 63 (2012), 489–505, arXiv: 1005.4130 | DOI | MR
[25] Watson G.N., “The continuation of functions defined by generalized hypergeometric series”, Trans. Camb. Phil. Soc., 21 (1910), 281–299
[26] Yamada Y., “An elliptic Garnier system from interpolation”, SIGMA, 13 (2017), 069, 8 pp., arXiv: 1706.05155 | DOI | MR