Noncolliding Macdonald Walks with an Absorbing Wall
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The branching rule is one of the most fundamental properties of the Macdonald symmetric polynomials. It expresses a Macdonald polynomial as a nonnegative linear combination of Macdonald polynomials with smaller number of variables. Taking a limit of the branching rule under the principal specialization when the number of variables goes to infinity, we obtain a Markov chain of $m$ noncolliding particles with negative drift and an absorbing wall at zero. The chain depends on the Macdonald parameters $(q,t)$ and may be viewed as a discrete deformation of the Dyson Brownian motion. The trajectory of the Markov chain is equivalent to a certain Gibbs ensemble of plane partitions with an arbitrary cascade front wall. In the Jack limit $t=q^{\beta/2}\to1$ the absorbing wall disappears, and the Macdonald noncolliding walks turn into the $\beta$-noncolliding random walks studied by Huang [Int. Math. Res. Not. 2021 (2021), 5898–5942, arXiv:1708.07115]. Taking $q=0$ (Hall–Littlewood degeneration) and further sending $t\to 1$, we obtain a continuous time particle system on $\mathbb{Z}_{\ge0}$ with inhomogeneous jump rates and absorbing wall at zero.
Keywords: Macdonald polynomials, branching rule, noncolliding random walks, lozenge tilings.
@article{SIGMA_2022_18_a78,
     author = {Leonid Petrov},
     title = {Noncolliding {Macdonald} {Walks} with an {Absorbing} {Wall}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a78/}
}
TY  - JOUR
AU  - Leonid Petrov
TI  - Noncolliding Macdonald Walks with an Absorbing Wall
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a78/
LA  - en
ID  - SIGMA_2022_18_a78
ER  - 
%0 Journal Article
%A Leonid Petrov
%T Noncolliding Macdonald Walks with an Absorbing Wall
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a78/
%G en
%F SIGMA_2022_18_a78
Leonid Petrov. Noncolliding Macdonald Walks with an Absorbing Wall. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a78/

[1] Anderson G.W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Stud. Adv. Math., 118, Cambridge University Press, Cambridge, 2010 | DOI | MR

[2] Borodin A., “Schur dynamics of the Schur processes”, Adv. Math., 228 (2011), 2268–2291, arXiv: 1001.3442 | DOI | MR

[3] Borodin A., Corwin I., “Macdonald processes”, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR

[4] Borodin A., Ferrari P.L., “Anisotropic growth of random surfaces in $2+1$ dimensions”, Comm. Math. Phys., 325 (2014), 603–684, arXiv: 0804.3035 | DOI | MR

[5] Borodin A., Gorin V., “Markov processes of infinitely many nonintersecting random walks”, Probab. Theory Related Fields, 155 (2013), 935–997, arXiv: 1106.1299 | DOI | MR

[6] Borodin A., Olshanski G., Representations of the infinite symmetric group, Cambridge Studies in Advanced Mathematics, 160, Cambridge University Press, Cambridge, 2017 | DOI | MR

[7] Boutillier C., Mkrtchyan S., Reshetikhin N., Tingley P., “Random skew plane partitions with a piecewise periodic back wall”, Ann. Henri Poincaré, 13 (2012), 271–296, arXiv: 0912.3968 | DOI | MR

[8] Dyson F.J., “A Brownian-motion model for the eigenvalues of a random matrix”, J. Math. Phys., 3 (1962), 1191–1198 | DOI | MR

[9] Erdős L., Yau H.-T., “Universality of local spectral statistics of random matrices”, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 377–414, arXiv: 1106.4986 | DOI | MR

[10] Gorin V., Petrov L., “Universality of local statistics for noncolliding random walks”, Ann. Probab., 47 (2019), 2686–2753, arXiv: 1608.03243 | DOI | MR

[11] Gorin V., Shkolnikov M., “Limits of multilevel TASEP and similar processes”, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 18–27, arXiv: 1206.3817 | DOI | MR

[12] Gorin V., Shkolnikov M., “Multilevel Dyson Brownian motions via Jack polynomials”, Probab. Theory Related Fields, 163 (2015), 413–463, arXiv: 1401.5595 | DOI | MR

[13] Huang J., “$\beta$-nonintersecting Poisson random walks: law of large numbers and central limit theorems”, Int. Math. Res. Not., 2021 (2021), 5898–5942, arXiv: 1708.07115 | DOI | MR

[14] Johansson K., “Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices”, Comm. Math. Phys., 215 (2001), 683–705, arXiv: math-ph/0006020 | DOI | MR

[15] Kaneko J., “$q$-Selberg integrals and Macdonald polynomials”, Ann. Sci. École Norm. Sup. (4), 29 (1996), 583–637 | DOI | MR

[16] Karlin S., McGregor J., “Coincidence probabilities”, Pacific J. Math., 9 (1959), 1141–1164 | DOI | MR

[17] Kerov S., Okounkov A., Olshanski G., “The boundary of the Young graph with Jack edge multiplicities”, Int. Math. Res. Not., 1998 (1998), 173–199, arXiv: q-alg/9703037 | DOI | MR

[18] König W., “Orthogonal polynomial ensembles in probability theory”, Probab. Surv., 2 (2005), 385–447, arXiv: math.PR/0403090 | DOI | MR

[19] König W., O'Connell N., Roch S., “Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles”, Electron. J. Probab., 7:5 (2002), 24 pp. | DOI | MR

[20] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Math. Monogr., 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[21] Okounkov A., Reshetikhin N., “Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16 (2003), 581–603, arXiv: math.CO/0107056 | DOI | MR

[22] Okounkov A., Reshetikhin N., “Random skew plane partitions and the Pearcey process”, Comm. Math. Phys., 269 (2007), 571–609, arXiv: math.CO/0503508 | DOI | MR

[23] Petrov L., Saenz A., “Mapping TASEP back in time”, Probab. Theory Related Fields, 182 (2022), 481–530, arXiv: 1907.09155 | DOI | MR

[24] Stanley R.P., Enumerative combinatorics, v. 2, Cambridge Stud. Adv. Math., 62, Cambridge University Press, Cambridge, 1999 | DOI | MR

[25] Warren J., “Dyson's Brownian motions, intertwining and interlacing”, Electron. J. Probab., 12:19 (2007), 573–590, arXiv: math.PR/0509720 | DOI | MR