K-Theoretic Descendent Series for Hilbert Schemes of Points on Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the holomorphic Euler characteristics of tautological sheaves on Hilbert schemes of points on surfaces. In particular, we establish the rationality of K-theoretic descendent series. Our approach is to control equivariant holomorphic Euler characteristics over the Hilbert scheme of points on the affine plane. To do so, we slightly modify a Macdonald polynomial identity of Mellit.
Keywords: Hilbert schemes, tautological bundles, Macdonald polynomials.
@article{SIGMA_2022_18_a77,
     author = {Noah Arbesfeld},
     title = {K-Theoretic {Descendent} {Series} for {Hilbert} {Schemes} of {Points} on {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a77/}
}
TY  - JOUR
AU  - Noah Arbesfeld
TI  - K-Theoretic Descendent Series for Hilbert Schemes of Points on Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a77/
LA  - en
ID  - SIGMA_2022_18_a77
ER  - 
%0 Journal Article
%A Noah Arbesfeld
%T K-Theoretic Descendent Series for Hilbert Schemes of Points on Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a77/
%G en
%F SIGMA_2022_18_a77
Noah Arbesfeld. K-Theoretic Descendent Series for Hilbert Schemes of Points on Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a77/

[1] Arbesfeld N., “K-theoretic Donaldson–Thomas theory and the Hilbert scheme of points on a surface”, Algebr. Geom., 8 (2021), 587–625, arXiv: 1905.04567 | DOI | MR

[2] Arbesfeld N., Johnson D., Lim W., Oprea D., Pandharipande R., “The virtual $K$-theory of Quot schemes of surfaces”, J. Geom. Phys., 164 (2021), 104154, 36 pp., arXiv: 2008.10661 | DOI | MR

[3] Bojko A., Wall-crossing for punctual Quot-schemes, arXiv: 2111.11102

[4] Bojko A., Wall-crossing for zero-dimensional sheaves and Hilbert schemes of points on Calabi–Yau 4-folds, arXiv: 2102.01056

[5] Carlsson E., “Vertex operators and quasimodularity of Chern numbers on the Hilbert scheme”, Adv. Math., 229 (2012), 2888–2907 | DOI | MR

[6] Carlsson E., Okounkov A., “Exts and vertex operators”, Duke Math. J., 161 (2012), 1797–1815, arXiv: 0801.2565 | DOI | MR

[7] Danila G., “Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface”, J. Algebraic Geom., 10 (2001), 247–280, arXiv: math.AG/9904004 | MR

[8] Ellingsrud G., Göttsche L., Lehn M., “On the cobordism class of the Hilbert scheme of a surface”, J. Algebraic Geom., 10 (2001), 81–100, arXiv: math.AG/9904095 | MR

[9] Ellingsrud G., Strømme S.A., “On the homology of the Hilbert scheme of points in the plane”, Invent. Math., 87 (1987), 343–352 | DOI | MR

[10] Garsia A., Haiman M., “A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion”, J. Algebraic Combin., 5 (1996), 191–244 | DOI | MR

[11] Garsia A.M., Haiman M., Tesler G., “Explicit plethystic formulas for Macdonald $q,t$-Kostka coefficients”, The Andrews Festschrift (Maratea, 1998), Springer, Berlin – Heidelberg, 2001, 253–297 | DOI | MR

[12] Göttsche L., “The Betti numbers of the Hilbert scheme of points on a smooth projective surface”, Math. Ann., 286 (1990), 193–207 | DOI | MR

[13] Johnson D., “Universal series for Hilbert schemes and strange duality”, Int. Math. Res. Not., 2020 (2020), 3130–3152, arXiv: 1708.05743 | DOI | MR

[14] Johnson D., Oprea D., Pandharipande R., “Rationality of descendent series for Hilbert and Quot schemes of surfaces”, Selecta Math. (N.S.), 27 (2021), 23, 52 pp., arXiv: 2002.05861 | DOI | MR

[15] Krug A., “Tensor products of tautological bundles under the Bridgeland–King–Reid–Haiman equivalence”, Geom. Dedicata, 172 (2014), 245–291, arXiv: 1211.1640 | DOI | MR

[16] Marian A., Oprea D., Pandharipande R., “The combinatorics of Lehn's conjecture”, J. Math. Soc. Japan, 71 (2019), 299–308, arXiv: 1708.08129 | DOI | MR

[17] Marian A., Oprea D., Pandharipande R., “Higher rank Segre integrals over the Hilbert scheme of points”, J. Eur. Math. Soc. (JEMS), 24 (2022), 2979–3015, arXiv: 1712.02382 | DOI | MR

[18] Mellit A., Plethystic identities and mixed Hodge structures of character varieties, arXiv: 1603.00193

[19] Okounkov A., “Hilbert schemes and multiple $q$-zeta values”, Funct. Anal. Appl., 48 (2014), 138–144, arXiv: 1404.3873 | DOI | MR

[20] Okounkov A., Smirnov A., “Quantum difference equation for Nakajima varieties”, Invent. Math., 229 (2022), 1203–1299, arXiv: 1602.09007 | DOI | MR

[21] Oprea D., Pandharipande R., “Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics”, Geom. Topol., 25 (2021), 3425–3505, arXiv: 1903.08787 | DOI | MR

[22] Scala L., Higher symmetric powers of tautological bundles on Hilbert schemes of points on a surface, arXiv: 1502.07595

[23] Scala L., “Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles”, Duke Math. J., 150 (2009), 211–267, arXiv: 0710.3072 | DOI | MR

[24] Stark S., On the Quot scheme $\mathrm{Quot}^l(\mathscr{E})$, arXiv: 2107.03991

[25] Stark S., Cosection localization and the Quot scheme $\mathrm{Quot}^{l}(\mathscr{E})$, arXiv: 2107.08025

[26] Thomason R.W., “Une formule de Lefschetz en $K$-théorie équivariante algébrique”, Duke Math. J., 68 (1992), 447–462 | DOI | MR

[27] Zhou J., $K$-theory of Hilbert schemes as a formal quantum field theory, arXiv: 1803.06080