@article{SIGMA_2022_18_a73,
author = {Taras Skrypnyk},
title = {The {Generalized} {Lipkin{\textendash}Meshkov{\textendash}Glick} {Model} and the {Modified} {Algebraic} {Bethe} {Ansatz}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a73/}
}
Taras Skrypnyk. The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a73/
[1] Avan J., Talon M., “Rational and trigonometric constant nonantisymmetric $R$-matrices”, Phys. Lett. B, 241 (1990), 77–82 | DOI | MR
[2] Babelon O., Viallet C.M., “Hamiltonian structures and Lax equations”, Phys. Lett. B, 237 (1990), 411–416 | DOI | MR
[3] Claeys P.W., De Baerdemacker S., Van Neck D., “Read–Green resonances in a topological superconductor coupled to a bath”, Phys. Rev. B, 93 (2016), 220503, 5 pp., arXiv: 1601.03990 | DOI
[4] Dimo C., Faribault A., “Strong-coupling emergence of dark states in XX central spin models”, Phys. Rev. B, 105 (2022), arXiv: 2112.09557 | DOI
[5] Faribault A., Tschirhart H., “Common framework and quadratic Bethe equations for rational Gaudin magnets in arbitrarily oriented magnetic fields”, SciPost Phys., 3 (2017) , arXiv: https://scipost.org/10.21468/SciPostPhys.3.2.0091704.01873 | DOI
[6] Freidel L., Maillet J.M., “Quadratic algebras and integrable systems”, Phys. Lett. B, 262 (1991), 278–284 | DOI | MR
[7] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1089–1098 | DOI | MR
[8] Lerma S., Dukelsky J., “The Lipkin–Meshkov–Glick model as a particular limit of the ${\rm SU}(1,1)$ Richardson–Gaudin integrable models”, Nuclear Phys. B, 870 (2013), 421–443, arXiv: 1212.3238 | DOI | MR
[9] Lerma S., Dukelsky J., “The Lipkin–Meshkov–Glick model from the perspective of the ${\rm SU}(1,1)$ Richardson–Gaudin models”, J. Phys. Conf. Ser., 492 (2014), 012013, 6 pp. | DOI | MR
[10] Lipkin H.J., Meshkov N., Glick A.J., “Validity of many-body approximation methods for a solvable model. I Exact solutions and perturbation theory”, Nuclear Phys., 62 (1965), 188–198 | DOI | MR
[11] Lukyanenko I., Isaac P.S., Links J., “An integrable case of the $p+{\rm i}p$ pairing Hamiltonian interacting with its environment”, J. Phys. A, 49 (2016), 084001, 22 pp., arXiv: 1507.04068 | DOI | MR
[12] Ortiz G., Somma R., Dukelsky J., Rombouts S., “Exactly-solvable models derived from a generalized Gaudin algebra”, Nuclear Phys. B, 707 (2005), 421–457, arXiv: cond-mat/0407429 | DOI | MR
[13] Pan F., Draayer J., “Analytical solutions for the LMG model”, Phys. Lett. B, 451 (1999), 1–10 | DOI
[14] Romano R., Roca-Maza X., Colò G., Shen S., “Extended Lipkin–Meshkov–Glick Hamiltonian”, J. Phys. G, 48 (2021), 05LT01, 9 pp., arXiv: 2009.03593 | DOI
[15] Shen Y., Isaac P.S., Links J., “Ground-state energy of a Richardson–Gaudin integrable BCS model”, SciPost Phys., 2 (2020), 001, 16 pp., arXiv: 1912.05692 | DOI
[16] Sklyanin E., On the integrability of Landau–Lifshitz equation, Preprint LOMI E-3-79, 1979 | MR
[17] Skrypnik T., “New integrable Gaudin-type systems, classical $r$-matrices and quasigraded Lie algebras”, Phys. Lett. A, 334 (2005), 390–399 | DOI | MR
[18] Skrypnyk T., “Generalized quantum Gaudin spin chains, involutive automorphisms and “twisted” classical $r$-matrices”, J. Math. Phys., 47 (2006), 033511, 10 pp. | DOI | MR
[19] Skrypnyk T., “Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras”, J. Geom. Phys., 57 (2006), 53–67 | DOI | MR
[20] Skrypnyk T., “Generalized Gaudin systems in a magnetic field and non-skew-symmetric $r$-matrices”, J. Phys. A, 40 (2007), 13337–13352 | DOI | MR
[21] Skrypnyk T., “Quantum integrable systems, non-skew-symmetric $r$-matrices and algebraic Bethe ansatz”, J. Math. Phys., 48 (2007), 023506, 14 pp. | DOI | MR
[22] Skrypnyk T., “Non-skew-symmetric classical $r$-matrices, algebraic Bethe ansatz, and Bardeen–Cooper–Schrieffer-type integrable systems”, J. Math. Phys., 50 (2009), 033504, 28 pp. | DOI | MR
[23] Skrypnyk T., “Generalized shift elements and classical $r$-matrices: construction and applications”, J. Geom. Phys., 80 (2014), 71–87 | DOI | MR
[24] Skrypnyk T., “Reductions in finite-dimensional integrable systems and special points of classical $r$-matrices”, J. Math. Phys., 57 (2016), 123504, 38 pp. | DOI | MR
[25] Skrypnyk T., “Classical $r$-matrices, “elliptic” BCS and Gaudin-type Hamiltonians and spectral problem”, Nuclear Phys. B, 941 (2019), 225–248 | DOI | MR
[26] Skrypnyk T., “Anisotropic BCS-Richardson model and algebraic Bethe ansatz”, Nuclear Phys. B, 975 (2022), 115679, 44 pp. | DOI | MR
[27] Skrypnyk T., Manojlović N., “Twisted rational $r$-matrices and algebraic Bethe ansatz: application to generalized Gaudin and Richardson models”, Nuclear Phys. B, 967 (2021), 115424, 29 pp. | DOI | MR
[28] Volterra V., “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–357 | DOI | MR