The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the Lipkin–Meshkov–Glick $2N$-fermion model is a particular case of one-spin Gaudin-type model in an external magnetic field corresponding to a limiting case of non-skew-symmetric elliptic $r$-matrix and to an external magnetic field directed along one axis. We propose an exactly-solvable generalization of the Lipkin–Meshkov–Glick fermion model based on the Gaudin-type model corresponding to the same $r$-matrix but arbitrary external magnetic field. This model coincides with the quantization of the classical Zhukovsky–Volterra gyrostat. We diagonalize the corresponding quantum Hamiltonian by means of the modified algebraic Bethe ansatz. We explicitly solve the corresponding Bethe-type equations for the case of small fermion number $N=1,2$.
Keywords: classical $r$-matrix, Gaudin-type model, algebraic Bethe ansatz.
@article{SIGMA_2022_18_a73,
     author = {Taras Skrypnyk},
     title = {The {Generalized} {Lipkin{\textendash}Meshkov{\textendash}Glick} {Model} and the {Modified} {Algebraic} {Bethe} {Ansatz}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a73/}
}
TY  - JOUR
AU  - Taras Skrypnyk
TI  - The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a73/
LA  - en
ID  - SIGMA_2022_18_a73
ER  - 
%0 Journal Article
%A Taras Skrypnyk
%T The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a73/
%G en
%F SIGMA_2022_18_a73
Taras Skrypnyk. The Generalized Lipkin–Meshkov–Glick Model and the Modified Algebraic Bethe Ansatz. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a73/

[1] Avan J., Talon M., “Rational and trigonometric constant nonantisymmetric $R$-matrices”, Phys. Lett. B, 241 (1990), 77–82 | DOI | MR

[2] Babelon O., Viallet C.M., “Hamiltonian structures and Lax equations”, Phys. Lett. B, 237 (1990), 411–416 | DOI | MR

[3] Claeys P.W., De Baerdemacker S., Van Neck D., “Read–Green resonances in a topological superconductor coupled to a bath”, Phys. Rev. B, 93 (2016), 220503, 5 pp., arXiv: 1601.03990 | DOI

[4] Dimo C., Faribault A., “Strong-coupling emergence of dark states in XX central spin models”, Phys. Rev. B, 105 (2022), arXiv: 2112.09557 | DOI

[5] Faribault A., Tschirhart H., “Common framework and quadratic Bethe equations for rational Gaudin magnets in arbitrarily oriented magnetic fields”, SciPost Phys., 3 (2017) , arXiv: https://scipost.org/10.21468/SciPostPhys.3.2.0091704.01873 | DOI

[6] Freidel L., Maillet J.M., “Quadratic algebras and integrable systems”, Phys. Lett. B, 262 (1991), 278–284 | DOI | MR

[7] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1089–1098 | DOI | MR

[8] Lerma S., Dukelsky J., “The Lipkin–Meshkov–Glick model as a particular limit of the ${\rm SU}(1,1)$ Richardson–Gaudin integrable models”, Nuclear Phys. B, 870 (2013), 421–443, arXiv: 1212.3238 | DOI | MR

[9] Lerma S., Dukelsky J., “The Lipkin–Meshkov–Glick model from the perspective of the ${\rm SU}(1,1)$ Richardson–Gaudin models”, J. Phys. Conf. Ser., 492 (2014), 012013, 6 pp. | DOI | MR

[10] Lipkin H.J., Meshkov N., Glick A.J., “Validity of many-body approximation methods for a solvable model. I Exact solutions and perturbation theory”, Nuclear Phys., 62 (1965), 188–198 | DOI | MR

[11] Lukyanenko I., Isaac P.S., Links J., “An integrable case of the $p+{\rm i}p$ pairing Hamiltonian interacting with its environment”, J. Phys. A, 49 (2016), 084001, 22 pp., arXiv: 1507.04068 | DOI | MR

[12] Ortiz G., Somma R., Dukelsky J., Rombouts S., “Exactly-solvable models derived from a generalized Gaudin algebra”, Nuclear Phys. B, 707 (2005), 421–457, arXiv: cond-mat/0407429 | DOI | MR

[13] Pan F., Draayer J., “Analytical solutions for the LMG model”, Phys. Lett. B, 451 (1999), 1–10 | DOI

[14] Romano R., Roca-Maza X., Colò G., Shen S., “Extended Lipkin–Meshkov–Glick Hamiltonian”, J. Phys. G, 48 (2021), 05LT01, 9 pp., arXiv: 2009.03593 | DOI

[15] Shen Y., Isaac P.S., Links J., “Ground-state energy of a Richardson–Gaudin integrable BCS model”, SciPost Phys., 2 (2020), 001, 16 pp., arXiv: 1912.05692 | DOI

[16] Sklyanin E., On the integrability of Landau–Lifshitz equation, Preprint LOMI E-3-79, 1979 | MR

[17] Skrypnik T., “New integrable Gaudin-type systems, classical $r$-matrices and quasigraded Lie algebras”, Phys. Lett. A, 334 (2005), 390–399 | DOI | MR

[18] Skrypnyk T., “Generalized quantum Gaudin spin chains, involutive automorphisms and “twisted” classical $r$-matrices”, J. Math. Phys., 47 (2006), 033511, 10 pp. | DOI | MR

[19] Skrypnyk T., “Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras”, J. Geom. Phys., 57 (2006), 53–67 | DOI | MR

[20] Skrypnyk T., “Generalized Gaudin systems in a magnetic field and non-skew-symmetric $r$-matrices”, J. Phys. A, 40 (2007), 13337–13352 | DOI | MR

[21] Skrypnyk T., “Quantum integrable systems, non-skew-symmetric $r$-matrices and algebraic Bethe ansatz”, J. Math. Phys., 48 (2007), 023506, 14 pp. | DOI | MR

[22] Skrypnyk T., “Non-skew-symmetric classical $r$-matrices, algebraic Bethe ansatz, and Bardeen–Cooper–Schrieffer-type integrable systems”, J. Math. Phys., 50 (2009), 033504, 28 pp. | DOI | MR

[23] Skrypnyk T., “Generalized shift elements and classical $r$-matrices: construction and applications”, J. Geom. Phys., 80 (2014), 71–87 | DOI | MR

[24] Skrypnyk T., “Reductions in finite-dimensional integrable systems and special points of classical $r$-matrices”, J. Math. Phys., 57 (2016), 123504, 38 pp. | DOI | MR

[25] Skrypnyk T., “Classical $r$-matrices, “elliptic” BCS and Gaudin-type Hamiltonians and spectral problem”, Nuclear Phys. B, 941 (2019), 225–248 | DOI | MR

[26] Skrypnyk T., “Anisotropic BCS-Richardson model and algebraic Bethe ansatz”, Nuclear Phys. B, 975 (2022), 115679, 44 pp. | DOI | MR

[27] Skrypnyk T., Manojlović N., “Twisted rational $r$-matrices and algebraic Bethe ansatz: application to generalized Gaudin and Richardson models”, Nuclear Phys. B, 967 (2021), 115424, 29 pp. | DOI | MR

[28] Volterra V., “Sur la théorie des variations des latitudes”, Acta Math., 22 (1899), 201–357 | DOI | MR