Monotone Cumulant-Moment Formula and Schröder Trees
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a formula to express multivariate monotone cumulants of random variables in terms of their moments by using a Hopf algebra of decorated Schröder trees.
Keywords: noncommutative probability, Schröder trees, Hopf algebras.
Mots-clés : cumulants, monotone cumulants, moment-cumulant formula
@article{SIGMA_2022_18_a72,
     author = {Octavio Arizmendi and Adrian Celestino},
     title = {Monotone {Cumulant-Moment} {Formula} and {Schr\"oder} {Trees}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a72/}
}
TY  - JOUR
AU  - Octavio Arizmendi
AU  - Adrian Celestino
TI  - Monotone Cumulant-Moment Formula and Schröder Trees
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a72/
LA  - en
ID  - SIGMA_2022_18_a72
ER  - 
%0 Journal Article
%A Octavio Arizmendi
%A Adrian Celestino
%T Monotone Cumulant-Moment Formula and Schröder Trees
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a72/
%G en
%F SIGMA_2022_18_a72
Octavio Arizmendi; Adrian Celestino. Monotone Cumulant-Moment Formula and Schröder Trees. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a72/

[1] Arizmendi O., Hasebe T., Lehner F., Vargas C., “Relations between cumulants in noncommutative probability”, Adv. Math., 282 (2015), 56–92, arXiv: 1408.2977 | DOI | MR

[2] Ben Ghorbal A., Schürmann M., “Non-commutative notions of stochastic independence”, Math. Proc. Cambridge Philos. Soc., 133 (2002), 531–561 | DOI | MR

[3] Celestino A., Ebrahimi-Fard K., Patras F., Perales D., “Cumulant-cumulant relations in free probability theory from Magnus' expansion”, Found. Comput. Math., 22 (2022), 733–755, arXiv: 2004.10152 | DOI | MR

[4] Celestino A., Patras F., A forest formula for pre-Lie exponentials, Magnus' operator and cumulant-cumulant relations, arXiv: 2203.11968

[5] Ebrahimi-Fard K., Patras F., “Cumulants, free cumulants and half-shuffles”, Proc. A., 471 (2015), 20140843, 18 pp., arXiv: 1409.5664 | DOI | MR

[6] Ebrahimi-Fard K., Patras F., “The splitting process in free probability theory”, Int. Math. Res. Not., 2016 (2016), 2647–2676, arXiv: 1502.02748 | DOI | MR

[7] Ebrahimi-Fard K., Patras F., “Monotone, free, and boolean cumulants: a shuffle algebra approach”, Adv. Math., 328 (2018), 112–132, arXiv: 1701.06152 | DOI | MR

[8] Ebrahimi-Fard K., Patras F., “Shuffle group laws: applications in free probability”, Proc. Lond. Math. Soc., 119 (2019), 814–840, arXiv: 1704.04942 | DOI | MR

[9] Ebrahimi-Fard K., Patras F., “A group-theoretical approach to conditionally free cumulants”, Algebraic Combinatorics, Resurgence, Moulds and Applications, CARMA, v. 1, IRMA Lect. Math. Theor. Phys., 31, EMS Publ. House, Berlin, 2020, 67–92, arXiv: 1806.06287 | DOI | MR

[10] Foissy L., “Bidendriform bialgebras, trees, and free quasi-symmetric functions”, J. Pure Appl. Algebra, 209 (2007), 439–459, arXiv: math.RA/0505207 | DOI | MR

[11] Hasebe T., Saigo H., “The monotone cumulants”, Ann. Inst. Henri Poincaré Probab. Stat., 47 (2011), 1160–1170, arXiv: 0907.4896 | DOI | MR

[12] Iserles A., “Expansions that grow on trees”, Notices Amer. Math. Soc., 49 (2002), 430–440 | MR

[13] Josuat-Vergès M., “Refined enumeration of noncrossing chains and Hook formulas”, Ann. Comb., 19 (2015), 443–460, arXiv: 1405.5477 | DOI | MR

[14] Josuat-Vergès M., Menous F., Novelli J.C., Thibon J.Y., “Free cumulants, Schröder trees, and operads”, Adv. in Appl. Math., 88 (2017), 92–119, arXiv: 1604.04759 | DOI | MR

[15] Muraki N., “The five independences as natural products”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6 (2003), 337–371 | DOI | MR

[16] Murua A., “The Hopf algebra of rooted trees, free Lie algebras, and Lie series”, Found. Comput. Math., 6 (2006), 387–426 | DOI | MR

[17] Speicher R., “Multiplicative functions on the lattice of noncrossing partitions and free convolution”, Math. Ann., 298 (1994), 611–628 | DOI | MR

[18] Speicher R., “On universal products”, Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997, 257–266 | DOI | MR

[19] Speicher R., Woroudi R., “Boolean convolution”, Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997, 267–279 | DOI | MR

[20] Voiculescu D., “Symmetries of some reduced free product $C^\ast$-algebras”, Operator Algebras and their Connections with Topology and Ergodic Theory (Buşteni, 1983), Lecture Notes in Math., 1132, Springer, Berlin, 1985, 556–588 | DOI | MR