@article{SIGMA_2022_18_a71,
author = {Takeo Kojima},
title = {Quadratic {Relations} of the {Deformed} $W${-Algebra} for the {Twisted} {Affine} {Lie} {Algebra} of {Type} $A_{2N}^{(2)}$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a71/}
}
TY - JOUR
AU - Takeo Kojima
TI - Quadratic Relations of the Deformed $W$-Algebra for the Twisted Affine Lie Algebra of Type $A_{2N}^{(2)}$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2022
VL - 18
UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a71/
LA - en
ID - SIGMA_2022_18_a71
ER -
%0 Journal Article
%A Takeo Kojima
%T Quadratic Relations of the Deformed $W$-Algebra for the Twisted Affine Lie Algebra of Type $A_{2N}^{(2)}$
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a71/
%G en
%F SIGMA_2022_18_a71
Takeo Kojima. Quadratic Relations of the Deformed $W$-Algebra for the Twisted Affine Lie Algebra of Type $A_{2N}^{(2)}$. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a71/
[1] Awata H., Kubo H., Odake S., Shiraishi J., Quantum deformation of the ${\mathcal W}_N$ algebras, arXiv: q-alg/9612001
[2] Awata H., Kubo H., Odake S., Shiraishi J., “Quantum ${\mathcal W}_N$ algebras and Macdonald polynomials”, Comm. Math. Phys., 179 (1996), 401–416, arXiv: q-alg/9508011 | DOI | MR
[3] Brazhnikov V., Lukyanov S., “Angular quantization and form factors in massive integrable models”, Nuclear Phys. B, 512 (1998), 616–636, arXiv: hep-th/9707091 | DOI | MR
[4] Ding J., Feigin B., “Quantized $W$-algebra of $\mathfrak{sl}(2,1)$: a construction from the quantization of screening operators”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 83–108, arXiv: math.QA/9801084 | DOI | MR
[5] Feigin B., Frenkel E., “Quantum $\mathcal W$-algebras and elliptic algebras”, Comm. Math. Phys., 178 (1996), 653–678, arXiv: q-alg/9508009 | DOI | MR
[6] Feigin B., Jimbo M., Mukhin E., Vilkoviskiy I., “Deformations of $\mathcal{W}$ algebras via quantum toroidal algebras”, Selecta Math. (N.S.), 27 (2021), 52, 62 pp., arXiv: 2003.04234 | DOI | MR
[7] Frenkel E., Reshetikhin N., “Quantum affine algebras and deformations of the Virasoro and ${\mathcal W}$-algebras”, Comm. Math. Phys., 178 (1996), 237–264, arXiv: q-alg/9505025 | DOI | MR
[8] Frenkel E., Reshetikhin N., “Deformations of $\mathcal W$-algebras associated to simple Lie algebras”, Comm. Math. Phys., 197 (1998), 1–32, arXiv: q-alg/9708006 | MR
[9] Frenkel E., Reshetikhin N., Semenov-Tian-Shansky M.A., “Drinfeld–Sokolov reduction for difference operators and deformations of ${\mathcal W}$-algebras. I The case of Virasoro algebra”, Comm. Math. Phys., 192 (1998), 605–629, arXiv: q-alg/9704011 | DOI | MR
[10] Harada K., Matsuo Y., Noshita G., Watanabe A., “$q$-Deformation of corner vertex operator algebras by Miura transformation”, J. High Energy Phys., 2021:4 (2021), 202, 49 pp., arXiv: 2101.03953 | DOI | MR
[11] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR
[12] Kojima T., “Quadratic relations of the deformed $W$-superalgebra $\mathcal W_{q,t} (A(M,N))$”, J. Phys. A, 54 (2021), 335201, 37 pp., arXiv: 2101.01110 | DOI | MR
[13] Kojima T., “Quadratic relations of the deformed $W$-superalgebra $\mathcal{W}_{q,t}(\mathfrak{sl}(2|1))$”, J. Math. Phys., 62 (2021), 051702, 19 pp., arXiv: 1912.03096 | DOI | MR
[14] Odake S., “Comments on the deformed $W_N$ algebra”, Internat. J. Modern Phys. B, 16 (2002), 2055–2064, arXiv: math.QA/0111230 | DOI | MR
[15] Semenov-Tian-Shansky M.A., Sevostyanov A.V., “Drinfeld–Sokolov reduction for difference operators and deformations of ${\mathcal W}$-algebras. II The general semisimple case”, Comm. Math. Phys., 192 (1998), 631–647, arXiv: q-alg/9702016 | DOI | MR
[16] Sevostyanov A., “Drinfeld–Sokolov reduction for quantum groups and deformations of $W$-algebras”, Selecta Math. (N.S.), 8 (2002), 637–703, arXiv: math.QA/0107215 | DOI | MR
[17] Shiraishi J., Kubo H., Awata H., Odake S., “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions”, Lett. Math. Phys., 38 (1996), 33–51, arXiv: q-alg/9507034 | DOI | MR
[18] van de Leur J.W., Contragredient Lie superalgebras of finite growth, Ph.D. Thesis, Utrecht University, 1986
[19] van de Leur J.W., “A classification of contragredient Lie superalgebras of finite growth”, Comm. Algebra, 17 (1989), 1815–1841 | DOI | MR