Mots-clés : dilations
@article{SIGMA_2022_18_a70,
author = {Michael Skeide},
title = {Spatial {Markov} {Semigroups} {Admit} {Hudson{\textendash}Parthasarathy} {Dilations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a70/}
}
Michael Skeide. Spatial Markov Semigroups Admit Hudson–Parthasarathy Dilations. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a70/
[1] Alevras A., “The standard form of an $E_0$-semigroup”, J. Funct. Anal., 182 (2001), 227–242 | DOI | MR
[2] Arveson W., Continuous analogues of Fock space, Mem. Amer. Math. Soc., 80, 1989, iv+66 pp. | DOI | MR
[3] Arveson W., “The index of a quantum dynamical semigroup”, J. Funct. Anal., 146 (1997), 557–588, arXiv: funct-an/9705005 | DOI | MR
[4] Arveson W., Noncommutative dynamics and $E$-semigroups, Springer Monogr. Math., Springer-Verlag, New York, 2003 | DOI | MR
[5] Arveson W., Kishimoto A., “A note on extensions of semigroups of $*$-endomorphisms”, Proc. Amer. Math. Soc., 116 (1992), 769–774 | DOI | MR
[6] Bhat B.V.R., “An index theory for quantum dynamical semigroups”, Trans. Amer. Math. Soc., 348 (1996), 561–583 | DOI | MR
[7] Bhat B.V.R., Cocycles of CCR flows, Mem. Amer. Math. Soc., 149, 2001, x+114 pp. | DOI | MR
[8] Bhat B.V.R., Liebscher V., Skeide M., “Subsystems of Fock need not be Fock: spatial CP-semigroups”, Proc. Amer. Math. Soc., 138 (2010), 2443–2456, arXiv: 0804.2169 | DOI | MR
[9] Bhat B.V.R., Skeide M., “Tensor product systems of Hilbert modules and dilations of completely positive semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3 (2000), 519–575 | DOI | MR
[10] Chebotarev A.M., Fagnola F., “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal., 153 (1998), 382–404, arXiv: funct-an/9711006 | DOI | MR
[11] Fowler N.J., “Free $E_0$-semigroups”, Canad. J. Math., 47 (1995), 744–785 | DOI | MR
[12] Goswami D., Sinha K.B., “Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra”, Comm. Math. Phys., 205 (1999), 377–403 | DOI | MR
[13] Hellmich J., Köstler C., Kümmerer B., Noncommutative continuous Bernoulli sifts, arXiv: math.OA/0411565
[14] Hudson R.L., Parthasarathy K.R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93 (1984), 301–323 | DOI | MR
[15] Hudson R.L., Parthasarathy K.R., “Stochastic dilations of uniformly continuous completely positive semigroups”, Acta Appl. Math., 2 (1984), 353–378 | DOI | MR
[16] Köstler C., Quanten-Markoff-Prozesse und Quanten-Brownsche Bewegungen, Ph.D. Thesis, University of Stuttgart, 2000
[17] Kümmerer B., Speicher R., “Stochastic integration on the Cuntz algebra $O_\infty$”, J. Funct. Anal., 103 (1992), 372–408 | DOI | MR
[18] Lindsay J.M., “Quantum stochastic analysis – an introduction”, Quantum Independent Increment Processes. I, Lecture Notes in Math., 1865, Springer, Berlin, 2005, 181–271 | DOI | MR
[19] Parthasarathy K.R., An introduction to quantum stochastic calculus, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1992 | DOI | MR
[20] Powers R.T., “A nonspatial continuous semigroup of $*$-endomorphisms of ${\mathfrak B}({\mathfrak H})$”, Publ. Res. Inst. Math. Sci., 23 (1987), 1053–1069 | DOI | MR
[21] Powers R.T., “New examples of continuous spatial semigroups of $\ast$-endomorphisms of $\mathfrak B(\mathfrak H)$”, Internat. J. Math., 10 (1999), 215–288 | DOI | MR
[22] Shalit O., Skeide M., “CP-semigroups and dilations, subproduct systems and superproduct systems: The multi-parameter case and beyond”, Dissertationes Math. (to appear) , arXiv: 2003.05166 | MR
[23] Skeide M., “Quantum stochastic calculus on full Fock modules”, J. Funct. Anal., 173 (2000), 401–452 | DOI | MR
[24] Skeide M., “Dilations, product systems and weak dilations”, Math. Notes, 71 (2002), 836–843 | DOI | MR
[25] Skeide M., “The index of (white) noises and their product systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 617–655, arXiv: math.OA/0601228 | DOI | MR
[26] Skeide M., “A simple proof of the fundamental theorem about Arveson systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 305–314, arXiv: math.OA/0602014 | DOI | MR
[27] Skeide M., “Spatial $E_0$-semigroups are restrictions of inner automorphism groups”, Quantum Probability and Infinite Dimensional Analysis, QP–PQ: Quantum Probab. White Noise Anal., 20, World Sci. Publ., Hackensack, NJ, 2007, 348–355, arXiv: math.OA/0509323 | DOI | MR
[28] Skeide M., “Constructing proper Markov semigroups for Arveson systems”, J. Math. Anal. Appl., 386 (2012), 796–800, arXiv: 1006.2211 | DOI | MR
[29] Skeide M., Classification of $E_0$-semigroups by product systems, Mem. Amer. Math. Soc., 240, 2016, vi+126 pp., arXiv: 0901.1798 | DOI | MR
[30] Skeide M., Free product systems generated by spatial tensor product systems, in preparation
[31] Tsirelson B., Unitary Brownian motions are linearizable, arXiv: math.PR/9806112
[32] Tsirelson B., “Scaling limit, noise, stability”, Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, Springer, Berlin, 2004, 1–106, arXiv: math.PR/0301237 | DOI | MR
[33] Tsirelson B., “On automorphisms of type II Arveson systems (probabilistic approach)”, New York J. Math., 14 (2008), 539–576, arXiv: math.OA/0411062 | MR