Spatial Markov Semigroups Admit Hudson–Parthasarathy Dilations
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present, for the first time, the result (from 2008) that (normal, strongly continuous) Markov semigroups on $\mathscr{B}(G)$ ($G$ a separable Hilbert space) admit a Hudson–Parthasarathy dilation (that is, a dilation to a cocycle perturbation of a noise) if and only if the Markov semigroup is spatial (that is, if it dominates an elementary CP-semigroup). The proof is by general abstract nonsense (taken from Arveson's classification of $E_0$-semigroups on $\mathscr{B}(H)$ by Arveson systems up to cocycle conjugacy) and not, as usual, by constructing the cocycle as a solution of a quantum stochastic differential equation in the sense of Hudson and Parthasarathy. All other results that make similar statements (especially, [Mem. Amer. Math. Soc. 240 (2016), vi+126 pages, arXiv:0901.1798]) for more general $C^*$-algebras) have been proved later by suitable adaptations of the methods exposed here. (They use Hilbert module techniques, which we carefully avoid here in order to make the result available without any appeal to Hilbert modules.)
Keywords: quantum dynamics, quantum probability, quantum Markov semigroups, product systems.
Mots-clés : dilations
@article{SIGMA_2022_18_a70,
     author = {Michael Skeide},
     title = {Spatial {Markov} {Semigroups} {Admit} {Hudson{\textendash}Parthasarathy} {Dilations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a70/}
}
TY  - JOUR
AU  - Michael Skeide
TI  - Spatial Markov Semigroups Admit Hudson–Parthasarathy Dilations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a70/
LA  - en
ID  - SIGMA_2022_18_a70
ER  - 
%0 Journal Article
%A Michael Skeide
%T Spatial Markov Semigroups Admit Hudson–Parthasarathy Dilations
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a70/
%G en
%F SIGMA_2022_18_a70
Michael Skeide. Spatial Markov Semigroups Admit Hudson–Parthasarathy Dilations. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a70/

[1] Alevras A., “The standard form of an $E_0$-semigroup”, J. Funct. Anal., 182 (2001), 227–242 | DOI | MR

[2] Arveson W., Continuous analogues of Fock space, Mem. Amer. Math. Soc., 80, 1989, iv+66 pp. | DOI | MR

[3] Arveson W., “The index of a quantum dynamical semigroup”, J. Funct. Anal., 146 (1997), 557–588, arXiv: funct-an/9705005 | DOI | MR

[4] Arveson W., Noncommutative dynamics and $E$-semigroups, Springer Monogr. Math., Springer-Verlag, New York, 2003 | DOI | MR

[5] Arveson W., Kishimoto A., “A note on extensions of semigroups of $*$-endomorphisms”, Proc. Amer. Math. Soc., 116 (1992), 769–774 | DOI | MR

[6] Bhat B.V.R., “An index theory for quantum dynamical semigroups”, Trans. Amer. Math. Soc., 348 (1996), 561–583 | DOI | MR

[7] Bhat B.V.R., Cocycles of CCR flows, Mem. Amer. Math. Soc., 149, 2001, x+114 pp. | DOI | MR

[8] Bhat B.V.R., Liebscher V., Skeide M., “Subsystems of Fock need not be Fock: spatial CP-semigroups”, Proc. Amer. Math. Soc., 138 (2010), 2443–2456, arXiv: 0804.2169 | DOI | MR

[9] Bhat B.V.R., Skeide M., “Tensor product systems of Hilbert modules and dilations of completely positive semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3 (2000), 519–575 | DOI | MR

[10] Chebotarev A.M., Fagnola F., “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal., 153 (1998), 382–404, arXiv: funct-an/9711006 | DOI | MR

[11] Fowler N.J., “Free $E_0$-semigroups”, Canad. J. Math., 47 (1995), 744–785 | DOI | MR

[12] Goswami D., Sinha K.B., “Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra”, Comm. Math. Phys., 205 (1999), 377–403 | DOI | MR

[13] Hellmich J., Köstler C., Kümmerer B., Noncommutative continuous Bernoulli sifts, arXiv: math.OA/0411565

[14] Hudson R.L., Parthasarathy K.R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93 (1984), 301–323 | DOI | MR

[15] Hudson R.L., Parthasarathy K.R., “Stochastic dilations of uniformly continuous completely positive semigroups”, Acta Appl. Math., 2 (1984), 353–378 | DOI | MR

[16] Köstler C., Quanten-Markoff-Prozesse und Quanten-Brownsche Bewegungen, Ph.D. Thesis, University of Stuttgart, 2000

[17] Kümmerer B., Speicher R., “Stochastic integration on the Cuntz algebra $O_\infty$”, J. Funct. Anal., 103 (1992), 372–408 | DOI | MR

[18] Lindsay J.M., “Quantum stochastic analysis – an introduction”, Quantum Independent Increment Processes. I, Lecture Notes in Math., 1865, Springer, Berlin, 2005, 181–271 | DOI | MR

[19] Parthasarathy K.R., An introduction to quantum stochastic calculus, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1992 | DOI | MR

[20] Powers R.T., “A nonspatial continuous semigroup of $*$-endomorphisms of ${\mathfrak B}({\mathfrak H})$”, Publ. Res. Inst. Math. Sci., 23 (1987), 1053–1069 | DOI | MR

[21] Powers R.T., “New examples of continuous spatial semigroups of $\ast$-endomorphisms of $\mathfrak B(\mathfrak H)$”, Internat. J. Math., 10 (1999), 215–288 | DOI | MR

[22] Shalit O., Skeide M., “CP-semigroups and dilations, subproduct systems and superproduct systems: The multi-parameter case and beyond”, Dissertationes Math. (to appear) , arXiv: 2003.05166 | MR

[23] Skeide M., “Quantum stochastic calculus on full Fock modules”, J. Funct. Anal., 173 (2000), 401–452 | DOI | MR

[24] Skeide M., “Dilations, product systems and weak dilations”, Math. Notes, 71 (2002), 836–843 | DOI | MR

[25] Skeide M., “The index of (white) noises and their product systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 617–655, arXiv: math.OA/0601228 | DOI | MR

[26] Skeide M., “A simple proof of the fundamental theorem about Arveson systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 305–314, arXiv: math.OA/0602014 | DOI | MR

[27] Skeide M., “Spatial $E_0$-semigroups are restrictions of inner automorphism groups”, Quantum Probability and Infinite Dimensional Analysis, QP–PQ: Quantum Probab. White Noise Anal., 20, World Sci. Publ., Hackensack, NJ, 2007, 348–355, arXiv: math.OA/0509323 | DOI | MR

[28] Skeide M., “Constructing proper Markov semigroups for Arveson systems”, J. Math. Anal. Appl., 386 (2012), 796–800, arXiv: 1006.2211 | DOI | MR

[29] Skeide M., Classification of $E_0$-semigroups by product systems, Mem. Amer. Math. Soc., 240, 2016, vi+126 pp., arXiv: 0901.1798 | DOI | MR

[30] Skeide M., Free product systems generated by spatial tensor product systems, in preparation

[31] Tsirelson B., Unitary Brownian motions are linearizable, arXiv: math.PR/9806112

[32] Tsirelson B., “Scaling limit, noise, stability”, Lectures on Probability Theory and Statistics, Lecture Notes in Math., 1840, Springer, Berlin, 2004, 1–106, arXiv: math.PR/0301237 | DOI | MR

[33] Tsirelson B., “On automorphisms of type II Arveson systems (probabilistic approach)”, New York J. Math., 14 (2008), 539–576, arXiv: math.OA/0411062 | MR