Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been known that the transition probability of the single species ASEP with $N$ particles is expressed as a sum of $N!$ $N$-fold contour integrals which are related to permutations in the symmetric group $S_N$. On other hand, the transition probabilities of the multi-species ASEP, in general, may be expressed as a sum of much more terms than $N!$. In this paper, we show that if the initial order of species is given by $2\cdots 21$, $12\cdots 2$, $1\cdots 12$ or $21\cdots 1$, then the transition probabilities can be expressed as a sum of at most $N!$ contour integrals, and provide their formulas explicitly.
Keywords: multi-species ASEP, transition probability, Bethe ansatz, symmetric group.
@article{SIGMA_2022_18_a7,
     author = {Eunghyun Lee and Temirlan Raimbekov},
     title = {Simplified {Forms} of the {Transition} {Probabilities} of the {Two-Species} {ASEP} with {Some} {Initial} {Orders} of {Particles}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a7/}
}
TY  - JOUR
AU  - Eunghyun Lee
AU  - Temirlan Raimbekov
TI  - Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a7/
LA  - en
ID  - SIGMA_2022_18_a7
ER  - 
%0 Journal Article
%A Eunghyun Lee
%A Temirlan Raimbekov
%T Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a7/
%G en
%F SIGMA_2022_18_a7
Eunghyun Lee; Temirlan Raimbekov. Simplified Forms of the Transition Probabilities of the Two-Species ASEP with Some Initial Orders of Particles. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a7/

[1] Borodin A., Bufetov A., “Color-position symmetry in interacting particle systems”, Ann. Probab., 49 (2021), 1607–1632, arXiv: 1905.04692 | DOI | MR | Zbl

[2] Borodin A., Wheeler M., Coloured stochastic vertex models and their specctral theory, arXiv: 1808.01866

[3] Chatterjee S., Schütz G. M., “Determinant representation for some transition probabilities in the TASEP with second class particles”, J. Stat. Phys., 140 (2010), 900–916, arXiv: 1003.5815 | DOI | MR | Zbl

[4] Kassel C., Turaev V., Braid groups, Graduate Texts in Mathematics, 247, Springer, New York, 2008 | DOI | MR | Zbl

[5] Korhonen M., Lee E., “The transition probability and the probability for the left-most particle's position of the $q$-totally asymmetric zero range process”, J. Math. Phys., 55 (2014), 013301, 15 pp., arXiv: 1308.4769 | DOI | MR | Zbl

[6] Kuan J., “Probability distributions of multi-species $q$-TAZRP and ASEP as double cosets of parabolic subgroups”, Ann. Henri Poincaré, 20 (2019), 1149–1173, arXiv: 1801.02313 | DOI | MR | Zbl

[7] Kuan J., “Determinantal expressions in multi-species TASEP”, SIGMA, 16 (2020), 133, 6 pp., arXiv: 2007.02913 | DOI | MR | Zbl

[8] Lee E., “Distribution of a particle's position in the ASEP with the alternating initial condition”, J. Stat. Phys., 140 (2010), 635–647 | DOI | MR | Zbl

[9] Lee E., “The current distribution of the multiparticle hopping asymmetric diffusion model”, J. Stat. Phys., 149 (2012), 50–72, arXiv: 1203.0501 | DOI | MR | Zbl

[10] Lee E., “Some conditional probabilities in the TASEP with second class particles”, J. Math. Phys., 58 (2017), 123301, 11 pp., arXiv: 1707.02539 | DOI | MR | Zbl

[11] Lee E., “On the TASEP with second class particles”, SIGMA, 14 (2018), 006, 17 pp., arXiv: 1705.10544 | DOI | MR | Zbl

[12] Lee E., “Exact formulas of the transition probabilities of the multi-species asymmetric simple exclusion process”, SIGMA, 16 (2020), 139, 9 pp., arXiv: 1809.07362 | DOI | MR | Zbl

[13] Lee E., Wang D., “Distributions of a particle's position and their asymptotics in the $q$-deformed totally asymmetric zero range process with site dependent jumping rates”, Stochastic Process. Appl., 129 (2019), 1795–1828, arXiv: 1703.08839 | DOI | MR | Zbl

[14] Nagao T., Sasamoto T., “Asymmetric simple exclusion process and modified random matrix ensembles”, Nuclear Phys. B, 699 (2004), 487–502, arXiv: cond-mat/0405321 | DOI | MR | Zbl

[15] Rákos A., Schütz G. M., “Bethe ansatz and current distribution for the TASEP with particle-dependent hopping rates”, Markov Process. Related Fields, 12 (2006), 323–334, arXiv: cond-mat/0506525 | MR | Zbl

[16] Tracy C. A., Widom H., “Integral formulas for the asymmetric simple exclusion process”, Comm. Math. Phys., 279 (2008), 815–844, arXiv: 0704.2633 | DOI | MR | Zbl

[17] Tracy C. A., Widom H., “On the distribution of a second-class particle in the asymmetric simple exclusion process”, J. Phys. A: Math. Theor., 42 (2009), 425002, 6 pp., arXiv: 0907.4395 | DOI | MR | Zbl

[18] Tracy C. A., Widom H., “On the asymmetric simple exclusion process with multiple species”, J. Stat. Phys., 150 (2013), 457–470, arXiv: 1105.4906 | DOI | MR | Zbl

[19] Tracy C. A., Widom H., “Blocks and gaps in the asymmetric simple exclusion process: asymptotics”, J. Math. Phys., 59 (2018), 091401, 13 pp., arXiv: 1711.08094 | DOI | MR | Zbl