Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It was recently shown (by the second author and Díaz García, Krutov, Somberg, and Strung) that every relative line module over an irreducible quantum flag manifold $\mathcal{O}_q(G/L_S)$ admits a unique $\mathcal{O}_q(G)$-covariant connection with respect to the Heckenberger–Kolb differential calculus $\Omega^1_q(G/L_S)$. In this paper we show that these connections are bimodule connections with an invertible associated bimodule map. This is proved by applying general results of Beggs and Majid, on principal connections for quantum principal bundles, to the quantum principal bundle presentation of the Heckenberger–Kolb calculi recently constructed by the authors and Díaz García. Explicit presentations of the associated bimodule maps are given first in terms of generalised quantum determinants, then in terms of the FRT presentation of the algebra $\mathcal{O}_q(G)$, and finally in terms of Takeuchi's categorical equivalence for relative Hopf modules.
Keywords: quantum groups, noncommutative geometry, quantum principal bundles, quantum flag manifolds, complex geometry.
Mots-clés : bimodule connections
@article{SIGMA_2022_18_a69,
     author = {Alessandro Carotenuto and R\'eamonn \'O Buachalla},
     title = {Bimodule {Connections} for {Relative} {Line} {Modules} over the {Irreducible} {Quantum} {Flag} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/}
}
TY  - JOUR
AU  - Alessandro Carotenuto
AU  - Réamonn Ó Buachalla
TI  - Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/
LA  - en
ID  - SIGMA_2022_18_a69
ER  - 
%0 Journal Article
%A Alessandro Carotenuto
%A Réamonn Ó Buachalla
%T Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/
%G en
%F SIGMA_2022_18_a69
Alessandro Carotenuto; Réamonn Ó Buachalla. Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/

[1] Aschieri P., Schenkel A., “Noncommutative connections on bimodules and Drinfeld twist deformation”, Adv. Theor. Math. Phys., 18 (2014), 513–612, arXiv: 1210.0241 | DOI | MR

[2] Beggs E., Majid S., “Spectral triples from bimodule connections and Chern connections”, J. Noncommut. Geom., 11 (2017), 669–701, arXiv: 1508.04808 | DOI | MR

[3] Beggs E., Majid S., Quantum Riemannian geometry, Grundlehren Math. Wiss., 355, Springer, Cham, 2020 | DOI | MR

[4] Bhowmick J., Goswami D., Landi G., “On the Koszul formula in noncommutative geometry”, Rev. Math. Phys., 32 (2020), 2050032, 33 pp., arXiv: 1910.09306 | DOI | MR

[5] Brzeziński T., Janelidze G., Maszczyk T., “Galois structures”, Lecture Notes on Noncommutative Geometry and Quantum Groups, Notes by P. Witkowski, ed. P.M. Hajac, 2008, 707–711 http://www.mimuw.edu.pl/p̃wit/toknotes/toknotes.pdf

[6] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: hep-th/9208007 | DOI | MR

[7] Carotenuto A., Díaz García F., Ó Buachalla R., “A Borel–Weil theorem for the irreducible quantum flag manifolds”, Int. Math. Res. Not. (to appear) | DOI

[8] Carotenuto A., Mrozinski C., Ó Buachalla R., A Borel–Weil theorem for the quantum Grassmannians, arXiv: 1611.07969

[9] Carotenuto A., Ó Buachalla R., Principal pairs of quantum homogeneous spaces, arXiv: 2111.11284

[10] Díaz García F., Krutov A., Ó Buachalla R., Somberg P., Strung K.R., Positive line bundles over the irreducible quantum flag manifolds, arXiv: 1912.08802 | MR

[11] Díaz García F., Krutov A., Ó Buachalla R., Somberg P., Strung K.R., “Holomorphic relative Hopf modules over the irreducible quantum flag manifolds”, Lett. Math. Phys., 111 (2021), 10, 24 pp., arXiv: 2005.09652 | DOI | MR

[12] Dubois-Violette M., “Lectures on graded differential algebras and noncommutative geometry”, Noncommutative Differential Geometry and its Applications to Physics (Shonan, 1999), Math. Phys. Stud., 23, Kluwer Acad. Publ., Dordrecht, 2001, 245–306, arXiv: math.QA/9912017 | MR

[13] Dubois-Violette M., Madore J., Masson T., Mourad J., “Linear connections on the quantum plane”, Lett. Math. Phys., 35 (1995), 351–358, arXiv: hep-th/9410199 | DOI | MR

[14] Dubois-Violette M., Masson T., “On the first-order operators in bimodules”, Lett. Math. Phys., 37 (1996), 467–474, arXiv: q-alg/9507028 | DOI | MR

[15] Dubois-Violette M., Michor P.W., “Connections on central bimodules in noncommutative differential geometry”, J. Geom. Phys., 20 (1996), 218–232, arXiv: q-alg/9503020 | DOI | MR

[16] Ghobadi A., Hopf algebroids, bimodule connections and noncommutative geometry, arXiv: 2001.08673

[17] Heckenberger I., Kolb S., “The locally finite part of the dual coalgebra of quantized irreducible flag manifolds”, Proc. London Math. Soc., 89 (2004), 457–484, arXiv: math.QA/0301244 | DOI | MR

[18] Heckenberger I., Kolb S., “De Rham complex for quantized irreducible flag manifolds”, J. Algebra, 305 (2006), 704–741, arXiv: math.QA/0307402 | DOI | MR

[19] Humphreys J.E., Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, Springer-Verlag, New York – Berlin, 1972 | DOI | MR

[20] Khalkhali M., Landi G., van Suijlekom W.D., “Holomorphic structures on the quantum projective line”, Int. Math. Res. Not., 2011 (2011), 851–884, arXiv: 0907.0154 | DOI | MR

[21] Khalkhali M., Moatadelro A., “The homogeneous coordinate ring of the quantum projective plane”, J. Geom. Phys., 61 (2011), 276–289, arXiv: 1007.3255 | DOI | MR

[22] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR

[23] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Math. Soc. Lecture Note Ser., 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR

[24] Madore J., Masson T., Mourad J., “Linear connections on matrix geometries”, Classical Quantum Gravity, 12 (1995), 1429–1440, arXiv: hep-th/9411127 | DOI | MR

[25] Majid S., “Noncommutative Riemannian and spin geometry of the standard $q$-sphere”, Comm. Math. Phys., 256 (2005), 255–285, arXiv: math.QA/0307351 | DOI | MR

[26] Matassa M., “Fubini–Study metrics and Levi-Civita connections on quantum projective spaces”, Adv. Math., 393 (2021), 108101, 56 pp., arXiv: 2010.03291 | DOI | MR

[27] Năstăsescu C., Van Oystaeyen F., Methods of graded rings, Lecture Notes in Math., 1836, Springer-Verlag, Berlin, 2004 | DOI | MR

[28] Ó Buachalla R., “Quantum bundle description of quantum projective spaces”, Comm. Math. Phys., 316 (2012), 345–373, arXiv: 1105.1768 | DOI | MR

[29] Ó Buachalla R., “Noncommutative complex structures on quantum homogeneous spaces”, J. Geom. Phys., 99 (2016), 154–173, arXiv: 1108.2374 | DOI | MR

[30] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR

[31] Stokman J.V., “The quantum orbit method for generalized flag manifolds”, Math. Res. Lett., 10 (2003), 469–481, arXiv: math.QA/0206245 | DOI | MR

[32] Takeuchi M., “Relative Hopf modules – equivalences and freeness criteria”, J. Algebra, 60 (1979), 452–471 | DOI | MR