Mots-clés : bimodule connections
@article{SIGMA_2022_18_a69,
author = {Alessandro Carotenuto and R\'eamonn \'O Buachalla},
title = {Bimodule {Connections} for {Relative} {Line} {Modules} over the {Irreducible} {Quantum} {Flag} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/}
}
TY - JOUR AU - Alessandro Carotenuto AU - Réamonn Ó Buachalla TI - Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/ LA - en ID - SIGMA_2022_18_a69 ER -
%0 Journal Article %A Alessandro Carotenuto %A Réamonn Ó Buachalla %T Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/ %G en %F SIGMA_2022_18_a69
Alessandro Carotenuto; Réamonn Ó Buachalla. Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a69/
[1] Aschieri P., Schenkel A., “Noncommutative connections on bimodules and Drinfeld twist deformation”, Adv. Theor. Math. Phys., 18 (2014), 513–612, arXiv: 1210.0241 | DOI | MR
[2] Beggs E., Majid S., “Spectral triples from bimodule connections and Chern connections”, J. Noncommut. Geom., 11 (2017), 669–701, arXiv: 1508.04808 | DOI | MR
[3] Beggs E., Majid S., Quantum Riemannian geometry, Grundlehren Math. Wiss., 355, Springer, Cham, 2020 | DOI | MR
[4] Bhowmick J., Goswami D., Landi G., “On the Koszul formula in noncommutative geometry”, Rev. Math. Phys., 32 (2020), 2050032, 33 pp., arXiv: 1910.09306 | DOI | MR
[5] Brzeziński T., Janelidze G., Maszczyk T., “Galois structures”, Lecture Notes on Noncommutative Geometry and Quantum Groups, Notes by P. Witkowski, ed. P.M. Hajac, 2008, 707–711 http://www.mimuw.edu.pl/p̃wit/toknotes/toknotes.pdf
[6] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: hep-th/9208007 | DOI | MR
[7] Carotenuto A., Díaz García F., Ó Buachalla R., “A Borel–Weil theorem for the irreducible quantum flag manifolds”, Int. Math. Res. Not. (to appear) | DOI
[8] Carotenuto A., Mrozinski C., Ó Buachalla R., A Borel–Weil theorem for the quantum Grassmannians, arXiv: 1611.07969
[9] Carotenuto A., Ó Buachalla R., Principal pairs of quantum homogeneous spaces, arXiv: 2111.11284
[10] Díaz García F., Krutov A., Ó Buachalla R., Somberg P., Strung K.R., Positive line bundles over the irreducible quantum flag manifolds, arXiv: 1912.08802 | MR
[11] Díaz García F., Krutov A., Ó Buachalla R., Somberg P., Strung K.R., “Holomorphic relative Hopf modules over the irreducible quantum flag manifolds”, Lett. Math. Phys., 111 (2021), 10, 24 pp., arXiv: 2005.09652 | DOI | MR
[12] Dubois-Violette M., “Lectures on graded differential algebras and noncommutative geometry”, Noncommutative Differential Geometry and its Applications to Physics (Shonan, 1999), Math. Phys. Stud., 23, Kluwer Acad. Publ., Dordrecht, 2001, 245–306, arXiv: math.QA/9912017 | MR
[13] Dubois-Violette M., Madore J., Masson T., Mourad J., “Linear connections on the quantum plane”, Lett. Math. Phys., 35 (1995), 351–358, arXiv: hep-th/9410199 | DOI | MR
[14] Dubois-Violette M., Masson T., “On the first-order operators in bimodules”, Lett. Math. Phys., 37 (1996), 467–474, arXiv: q-alg/9507028 | DOI | MR
[15] Dubois-Violette M., Michor P.W., “Connections on central bimodules in noncommutative differential geometry”, J. Geom. Phys., 20 (1996), 218–232, arXiv: q-alg/9503020 | DOI | MR
[16] Ghobadi A., Hopf algebroids, bimodule connections and noncommutative geometry, arXiv: 2001.08673
[17] Heckenberger I., Kolb S., “The locally finite part of the dual coalgebra of quantized irreducible flag manifolds”, Proc. London Math. Soc., 89 (2004), 457–484, arXiv: math.QA/0301244 | DOI | MR
[18] Heckenberger I., Kolb S., “De Rham complex for quantized irreducible flag manifolds”, J. Algebra, 305 (2006), 704–741, arXiv: math.QA/0307402 | DOI | MR
[19] Humphreys J.E., Introduction to Lie algebras and representation theory, Grad. Texts in Math., 9, Springer-Verlag, New York – Berlin, 1972 | DOI | MR
[20] Khalkhali M., Landi G., van Suijlekom W.D., “Holomorphic structures on the quantum projective line”, Int. Math. Res. Not., 2011 (2011), 851–884, arXiv: 0907.0154 | DOI | MR
[21] Khalkhali M., Moatadelro A., “The homogeneous coordinate ring of the quantum projective plane”, J. Geom. Phys., 61 (2011), 276–289, arXiv: 1007.3255 | DOI | MR
[22] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR
[23] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Math. Soc. Lecture Note Ser., 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR
[24] Madore J., Masson T., Mourad J., “Linear connections on matrix geometries”, Classical Quantum Gravity, 12 (1995), 1429–1440, arXiv: hep-th/9411127 | DOI | MR
[25] Majid S., “Noncommutative Riemannian and spin geometry of the standard $q$-sphere”, Comm. Math. Phys., 256 (2005), 255–285, arXiv: math.QA/0307351 | DOI | MR
[26] Matassa M., “Fubini–Study metrics and Levi-Civita connections on quantum projective spaces”, Adv. Math., 393 (2021), 108101, 56 pp., arXiv: 2010.03291 | DOI | MR
[27] Năstăsescu C., Van Oystaeyen F., Methods of graded rings, Lecture Notes in Math., 1836, Springer-Verlag, Berlin, 2004 | DOI | MR
[28] Ó Buachalla R., “Quantum bundle description of quantum projective spaces”, Comm. Math. Phys., 316 (2012), 345–373, arXiv: 1105.1768 | DOI | MR
[29] Ó Buachalla R., “Noncommutative complex structures on quantum homogeneous spaces”, J. Geom. Phys., 99 (2016), 154–173, arXiv: 1108.2374 | DOI | MR
[30] Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR
[31] Stokman J.V., “The quantum orbit method for generalized flag manifolds”, Math. Res. Lett., 10 (2003), 469–481, arXiv: math.QA/0206245 | DOI | MR
[32] Takeuchi M., “Relative Hopf modules – equivalences and freeness criteria”, J. Algebra, 60 (1979), 452–471 | DOI | MR