Mots-clés : invariant
@article{SIGMA_2022_18_a67,
author = {Jacob Gross and Dominic Joyce and Yuuji Tanaka},
title = {Universal {Structures} in $\mathbb C${-Linear} {Enumerative} {Invariant} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a67/}
}
TY - JOUR AU - Jacob Gross AU - Dominic Joyce AU - Yuuji Tanaka TI - Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a67/ LA - en ID - SIGMA_2022_18_a67 ER -
%0 Journal Article %A Jacob Gross %A Dominic Joyce %A Yuuji Tanaka %T Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a67/ %G en %F SIGMA_2022_18_a67
Jacob Gross; Dominic Joyce; Yuuji Tanaka. Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a67/
[1] Abramovich D., Olsson M., Vistoli A., “Tame stacks in positive characteristic”, Ann. Inst. Fourier (Grenoble), 58 (2008), 1057–1091, arXiv: math.AG/0703310 | DOI | MR
[2] Akbulut S., McCarthy J.D., Casson's invariant for oriented homology $3$-spheres. An exposition, Mathematical Notes, 36, Princeton University Press, Princeton, NJ, 1990 | DOI | MR
[3] Álvarez-Cónsul L., García-Prada O., “Hitchin–Kobayashi correspondence, quivers, and vortices”, Comm. Math. Phys., 238 (2003), 1–33, arXiv: math.DG/0112161 | DOI | MR
[4] Arbesfeld N., “$K$-theoretic Donaldson–Thomas theory and the Hilbert scheme of points on a surface”, Algebr. Geom., 8 (2021), 587–625, arXiv: 1905.04567 | DOI | MR
[5] Atiyah M.F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR
[6] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR
[7] Benson D.J., Representations and cohomology. II Cohomology of groups and modules, Cambridge Studies in Advanced Mathematics, 31, Cambridge University Press, Cambridge, 1991 | MR
[8] Blanc A., “Topological K-theory of complex noncommutative spaces”, Compos. Math., 152 (2016), 489–555, arXiv: 1211.7360 | DOI | MR
[9] Boden H.U., Herald C.M., “The ${\rm SU}(3)$ Casson invariant for integral homology $3$-spheres”, J. Differential Geom., 50 (1998), 147–206, arXiv: math.DG/9809124 | DOI | MR
[10] Borcherds R.E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR
[11] Borisov D., Joyce D., “Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds”, Geom. Topol., 21 (2017), 3231–3311, arXiv: 1504.00690 | DOI | MR
[12] Bradlow S.B., “Vortices in holomorphic line bundles over closed Kähler manifolds”, Comm. Math. Phys., 135 (1990), 1–17 | DOI | MR
[13] Bradlow S.B., “Special metrics and stability for holomorphic bundles with global sections”, J. Differential Geom., 33 (1991), 169–213 | DOI | MR
[14] Bradlow S.B., Daskalopoulos G.D., “Moduli of stable pairs for holomorphic bundles over Riemann surfaces”, Internat. J. Math., 2 (1991), 477–513 | DOI | MR
[15] Bridgeland T., “Stability conditions on triangulated categories”, Ann. of Math., 166 (2007), 317–345, arXiv: math.AG/0703310 | DOI | MR
[16] Bridgeland T., “Geometry from Donaldson–Thomas invariants”, Integrability, Quantization, and Geometry II Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 103, Amer. Math. Soc., Providence, RI, 2021, 1–66, arXiv: 1912.06504 | MR
[17] Cao Y., Gross J., Joyce D., “Otability of moduli spaces of ${\rm Spin}(7)$-instantons and coherent sheaves on Calabi–Yau 4-folds”, Adv. Math., 368 (2020), 107134, 60 pp., arXiv: 1811.09658 | DOI | MR
[18] Cao Y., Kool M., Monavari S., “$K$-theoretic DT/PT correspondence for toric Calabi–Yau $4$-folds”, Commun. Math. Phys. (to appear) , arXiv: 1906.07856 | DOI | MR
[19] Cao Y., Leung N.C., Donaldson–Thomas theory for Calabi–Yau $4$-folds, arXiv: 1407.7659
[20] Donaldson S., Segal E., “Gauge theory in higher dimensions, II”, Geometry of Special Holonomy and Related Topics, Surv. Differ. Geom., 16, Int. Press, Somerville, MA, 2011, 1–41, arXiv: 0902.3239 | DOI | MR
[21] Donaldson S.K., “An application of gauge theory to four-dimensional topology”, J. Differential Geom., 18 (1983), 279–315 | DOI | MR
[22] Donaldson S.K., “Polynomial invariants for smooth four-manifolds”, Topology, 29 (1990), 257–315 | DOI | MR
[23] Donaldson S.K., Kronheimer P.B., The geometry of four-manifolds, Oxford Mathematical Monographs, 1990, The Clarendon Press, Oxford University Press, New York, 1990 | MR
[24] Donaldson S.K., Thomas R.P., “Gauge theory in higher dimensions”, The Geometric Universe (Oxford, 1996), Oxford University Press, Oxford, 1998, 31–47 | MR
[25] Ellingsrud G., Göttsche L., “Variation of moduli spaces and Donaldson invariants under change of polarization”, J. Reine Angew. Math., 467 (1995), 1–49, arXiv: alg-geom/9410005 | DOI | MR
[26] Feigin B., Gukov S., “${\rm VOA}[M_4]$”, J. Math. Phys., 61 (2020), 012302, 27 pp., arXiv: 1806.02470 | DOI | MR
[27] Fintushel R., Stern R.J., “Donaldson invariants of $4$-manifolds with simple type”, J. Differential Geom., 42 (1995), 577–633 | DOI | MR
[28] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004 | DOI | MR
[29] Friedlander E.M., Walker M.E., “Semi-topological $K$-theory”, Handbook of $K$-Theory, v. 1, 2, Springer, Berlin, 2005, 877–924 | DOI | MR
[30] Friedman R., Qin Z., “Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces”, Comm. Anal. Geom., 3 (1995), 11–83, arXiv: alg-geom/9410007 | DOI | MR
[31] García-Prada O., “A direct existence proof for the vortex equations over a compact Riemann surface”, Bull. London Math. Soc., 26 (1994), 88–96 | DOI | MR
[32] García-Prada O., “Dimensional reduction of stable bundles, vortices and stable pairs”, Internat. J. Math., 5 (1994), 1–52 | DOI | MR
[33] Gómez T.L., “Algebraic stacks”, Proc. Indian Acad. Sci. Math. Sci., 111 (2001), 1–31, arXiv: math.AG/9911199 | DOI | MR
[34] Göttsche L., “Modular forms and Donaldson invariants for $4$-manifolds with $b_{+}=1$”, J. Amer. Math. Soc., 9 (1996), 827–843, arXiv: alg-geom/9506018 | DOI | MR
[35] Göttsche L., Kool M., “A rank 2 Dijkgraaf–Moore–Verlinde–Verlinde formula”, Commun. Number Theory Phys., 13 (2019), 165–201, arXiv: 1801.01878 | DOI | MR
[36] Göttsche L., Kool M., “Virtual refinements of the Vafa–Witten formula”, Comm. Math. Phys., 376 (2020), 1–49, arXiv: 1703.07196 | DOI | MR
[37] Göttsche L., Nakajima H., Yoshioka K., “Instanton counting and Donaldson invariants”, J. Differential Geom., 80 (2008), 343–390, arXiv: math.AG/0606180 | DOI | MR
[38] Göttsche L., Nakajima H., Yoshioka K., “$K$-theoretic Donaldson invariants via instanton counting”, Pure Appl. Math. Q., 5 (2009), 1029–1111, arXiv: math.AG/0611945 | DOI | MR
[39] Göttsche L., Nakajima H., Yoshioka K., “Donaldson–Seiberg–Witten from Mochizuki's formula and instanton counting”, Publ. Res. Inst. Math. Sci., 47 (2011), 307–359, arXiv: 1001.5024 | DOI | MR
[40] Göttsche L., Zagier D., “Jacobi forms and the structure of Donaldson invariants for $4$-manifolds with $b_+=1$”, Selecta Math. (N.S.), 4 (1998), 69–115, arXiv: alg-geom/9612020 | DOI | MR
[41] Grojnowski I., “Instantons and affine algebras. I The Hilbert scheme and vertex operators”, Math. Res. Lett., 3 (1996), 275–291, arXiv: alg-geom/9506020 | DOI | MR
[42] Gross J., The homology of moduli stacks of complexes, arXiv: 1907.03269
[43] Halpern-Leistner D., “$\Theta$-stratifications, $\Theta$-reductive stacks, and applications”, Algebraic Geometry (Salt Lake City 2015), Proc. Sympos. Pure Math., 97, Amer. Math. Soc., Providence, RI, 2018, 349–379, arXiv: 1608.04797 | DOI | MR
[44] Harder G., Narasimhan M.S., “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann., 212 (1975), 215–248 | DOI | MR
[45] Hitchin N.J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR
[46] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, 2nd ed., Cambridge University Press, Cambridge, 2010 | DOI | MR
[47] Joyce D., Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR
[48] Joyce D., “Configurations in abelian categories. I Basic properties and moduli stacks”, Adv. Math., 203 (2006), 194–255, arXiv: math.AG/0312190 | DOI | MR
[49] Joyce D., “Constructible functions on Artin stacks”, J. London Math. Soc., 74 (2006), 583–606, arXiv: math.AG/0403305 | DOI | MR
[50] Joyce D., “Configurations in abelian categories. II Ringel–Hall algebras”, Adv. Math., 210 (2007), 635–706, arXiv: math.AG/0503029 | DOI | MR
[51] Joyce D., “Configurations in abelian categories. III Stability conditions and identities”, Adv. Math., 215 (2007), 153–219, arXiv: math.AG/0410267 | DOI | MR
[52] Joyce D., “Motivic invariants of Artin stacks and ‘stack functions’”, Q. J. Math., 58 (2007), 345–392, arXiv: math.AG/0509722 | DOI | MR
[53] Joyce D., “Configurations in abelian categories. IV Invariants and changing stability conditions”, Adv. Math., 217 (2008), 125–204, arXiv: math.AG/0410268 | DOI | MR
[54] Joyce D., $D$-manifolds and d-orbifolds: a theory of derived differential geometry, Preliminary version, 2012 https://people.maths.ox.ac.uk/ ̃ joyce/dmanifolds.html
[55] Joyce D., “An introduction to d-manifolds and derived differential geometry”, Moduli Spaces, London Math. Soc. Lecture Note Ser., 411, Cambridge University Press, Cambridge, 2014, 230–281, arXiv: 1206.4207 | DOI | MR
[56] Joyce D., “Kuranishi spaces as a 2-category”, Virtual Fundamental Cycles in Symplectic Topology, Math. Surveys Monogr., 237, Amer. Math. Soc., Providence, RI, 2019, 253–298, arXiv: 1510.07444 | DOI | MR
[57] Joyce D., Kuranishi spaces and symplectic geometry, Preliminary version of Vols. I, II https://people.maths.ox.ac.uk/ ̃ joyce/Kuranishi.html
[58] Joyce D., Ringel–Hall style vertex algebra and Lie algebra structures on the homology of moduli spaces, Preliminary version, 2020 https://people.maths.ox.ac.uk/ ̃ joyce/hall.pdf
[59] Joyce D., Enumerative invariants and wall-crossing formulae in abelian categories, arXiv: 2111.04694
[60] Joyce D., Song Y., A theory of generalized Donaldson–Thomas invariants, Mem. Amer. Math. Soc., 217, 2012, iv+199 pp., arXiv: 0810.5645 | DOI | MR
[61] Joyce D., Tanaka Y., Upmeier M., “On orientations for gauge-theoretic moduli spaces”, Adv. Math., 362 (2020), 106957, 64 pp., arXiv: 1811.01096 | DOI | MR
[62] Kac V., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1998 | DOI | MR
[63] Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR
[64] King A.D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2), 45 (1994), 515–530 | DOI | MR
[65] Kirwan F.C., Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, 31, Princeton University Press, Princeton, NJ, 1984 | DOI | MR
[66] Kontsevich M., Soibelman Y., Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv: 0811.2435
[67] Kotschick D., “${\rm SO}(3)$-invariants for $4$-manifolds with $b^+_2=1$”, Proc. London Math. Soc., 63 (1991), 426–448 | DOI | MR
[68] Kotschick D., Morgan J.W., “${\rm SO}(3)$-invariants for $4$-manifolds with $b^+_2=1$ II”, J. Differential Geom., 39 (1994), 433–456 | DOI | MR
[69] Kronheimer P.B., “Four-manifold invariants from higher-rank bundles”, J. Differential Geom., 70 (2005), 59–112, arXiv: math.GT/0407518 | DOI | MR
[70] Kronheimer P.B., Mrowka T.S., “Embedded surfaces and the structure of Donaldson's polynomial invariants”, J. Differential Geom., 41 (1995), 573–734 | DOI | MR
[71] Laarakker T., “Monopole contributions to refined Vafa–Witten invariants”, Geom. Topol., 24 (2020), 2781–2828, arXiv: 1810.00385 | DOI | MR
[72] Laumon G., Moret-Bailly L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 39, Springer-Verlag, Berlin, 2000 | DOI | MR
[73] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR
[74] Mariño M., Moore G., “The Donaldson–Witten function for gauge groups of rank larger than one”, Comm. Math. Phys., 199 (1998), 25–69, arXiv: hep-th/9802185 | DOI | MR
[75] Martin S., The Donaldson–Witten function for gauge groups of rank larger than one, arXiv: math.SG/0001002
[76] May J.P., A concise course in algebraic topology, Chicago Lectures in Mathematics, 1999, University of Chicago Press, Chicago, IL, 1999 | MR
[77] Metzler D., The Donaldson–Witten function for gauge groups of rank larger than one, arXiv: math.DG/0306176
[78] Milnor J.W., Stasheff J.D., Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974 | DOI | MR
[79] Mochizuki T., Donaldson type invariants for algebraic surfaces. Transition of moduli stacks, Lecture Notes in Mathematics, 1972, Springer-Verlag, Berlin, 2009 | DOI | MR
[80] Moore G., Witten E., “Integration over the $u$-plane in Donaldson theory”, Adv. Theor. Math. Phys., 1 (1997), 298–387, arXiv: alg-geom/9510003 | DOI | MR
[81] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, 3rd ed., Springer-Verlag, Berlin, 1994 | DOI | MR
[82] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI | MR
[83] Nakajima H., “Instantons and affine Lie algebras”, Nuclear Phys. B Proc. Suppl., 1996, 154–161, arXiv: alg-geom/9510003 | DOI | MR
[84] Nakajima H., “Heisenberg algebra and Hilbert schemes of points on projective surfaces”, Ann. of Math., 145 (1997), 379–388, arXiv: alg-geom/9507012 | DOI | MR
[85] Noohi B., Foundations of topological stacks, I, arXiv: math.AG/0503247
[86] Noohi B., “Homotopy types of topological stacks”, Adv. Math., 230 (2012), 2014–2047, arXiv: 0808.3799 | DOI | MR
[87] Oh J., Thomas R.P., Counting sheaves on Calabi–Yau $4$-folds. I, arXiv: 2009.05542
[88] Okounkov A., “Lectures on K-theoretic computations in enumerative geometry”, Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380, arXiv: 1512.07363 | DOI | MR
[89] Olsson M., Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, 62, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR
[90] Pantev T., Toën B., Vaquié M., Vezzosi G., “Shifted symplectic structures”, Publ. Math. Inst. Hautes Études Sci., 117 (2013), 271–328, arXiv: 1111.3209 | DOI | MR
[91] Ringel C.M., “Hall algebras”, Topics in Algebra (Warsaw, 1988), v. 1, Banach Center Publ., 26, PWN, Warsaw, 1990, 433–447 | DOI | MR
[92] Romagny M., “Group actions on stacks and applications”, Michigan Math. J., 53 (2005), 209–236 | DOI | MR
[93] Rudakov A., “Stability for an abelian category”, J. Algebra, 197 (1997), 231–245 | DOI | MR
[94] Shen J., “Cobordism invariants of the moduli space of stable pairs”, J. Lond. Math. Soc., 94 (2016), 427–446, arXiv: 1409.4576 | DOI | MR
[95] Simpson C., The topological realization of a simplicial presheaf, arXiv: q-alg/9609004
[96] Tanaka Y., Thomas R.P., “Vafa–Witten invariants for projective surfaces I: stable case”, J. Algebraic Geom., 29 (2020), 603–668, arXiv: 1702.08487 | DOI | MR
[97] Tanaka Y., Thomas R.P., “Vafa–Witten invariants for projective surfaces II: semistable case”, Pure Appl. Math. Q., 13 (2017), 517–562, arXiv: 1702.08488 | DOI | MR
[98] Taubes C.H., “Casson's invariant and gauge theory”, J. Differential Geom., 31 (1990), 547–599 | DOI | MR
[99] Thaddeus M., “Stable pairs, linear systems and the Verlinde formula”, Invent. Math., 117 (1994), 317–353, arXiv: alg-geom/9210007 | DOI | MR
[100] Thomas R.P., “A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles on $K3$ fibrations”, J. Differential Geom., 54 (2000), 367–438 , arXiv: http://projecteuclid.org/euclid.jdg/1214341649math.AG/9806111 | DOI
[101] Thomas R.P., “Equivariant $K$-theory and refined Vafa–Witten invariants”, Comm. Math. Phys., 378 (2020), 1451–1500, arXiv: 1810.00078 | DOI | MR
[102] Toën B., “Higher and derived stacks: a global overview”, Algebraic Geometry (Seattle 2005), v. 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, 435–487, arXiv: math.AG/0604504 | DOI | MR
[103] Toën B., “Derived algebraic geometry”, EMS Surv. Math. Sci., 1 (2014), 153–240, arXiv: 1401.1044 | DOI | MR
[104] Toën B., Vaquié M., “Moduli of objects in dg-categories”, Ann. Sci. École Norm. Sup. (4), 40 (2007), 387–444, arXiv: math.AG/0503269 | DOI | MR
[105] Toën B., Vezzosi G., “From HAG to DAG: derived moduli stacks”, Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 173–216, arXiv: math.AG/0210407 | DOI | MR
[106] Toën B., Vezzosi G., Homotopical algebraic geometry. II Geometric stacks and applications, Mem. Amer. Math. Soc., 193, 2008, x+224 pp., arXiv: math.AG/0404373 | DOI | MR
[107] Upmeier M., Homological Lie brackets on moduli spaces and pushforward operations in twisted $K$-theory, Mem. Amer. Math. Soc., 2021, 25 pp., arXiv: 2101.10990
[108] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796, arXiv: hep-th/9411102 | DOI | MR
[109] Zhu Y., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302 | DOI | MR