@article{SIGMA_2022_18_a65,
author = {Nianhua Li and Q. P. Liu},
title = {Smooth {Multisoliton} {Solutions} of a {2-Component} {Peakon} {System} with {Cubic} {Nonlinearity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/}
}
TY - JOUR AU - Nianhua Li AU - Q. P. Liu TI - Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/ LA - en ID - SIGMA_2022_18_a65 ER -
Nianhua Li; Q. P. Liu. Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/
[1] Boutet de Monvel A., Shepelsky D., “A Riemann–Hilbert approach for the Degasperis–Procesi equation”, Nonlinearity, 26 (2013), 2081–2107, arXiv: 1107.5995 | DOI | MR
[2] Boutet de Monvel A., Shepelsky D., Zielinski L., “A Riemann–Hilbert approach for the Novikov equation”, SIGMA, 12 (2016), 095, 22 pp., arXiv: 1603.08842 | DOI | MR
[3] Chang X.-K., Hu X.-B., Li S.-H., “Degasperis–Procesi peakon dynamical system and finite Toda lattice of CKP type”, Nonlinearity, 31 (2018), 4746–4775, arXiv: 1712.08306 | DOI | MR
[4] Chang X.-K., Hu X.-B., Li S.-H., Zhao J.-X., “An application of Pfaffians to multipeakons of the Novikov equation and the finite Toda lattice of BKP type”, Adv. Math., 338 (2018), 1077–1118, arXiv: 1712.00965 | DOI | MR
[5] Constantin A., Ivanov R., “Dressing method for the Degasperis–Procesi equation”, Stud. Appl. Math., 138 (2017), 205–226, arXiv: 1608.02120 | DOI | MR
[6] Constantin A., Ivanov R.I., Lenells J., “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR
[7] Constantin A., Lannes D., “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192 (2009), 165–186, arXiv: 0709.0905 | DOI | MR
[8] Degasperis A., Holm D.D., Hone A.N.W., “A new integrable equation with peakon solutions”, Theoret. and Math. Phys., 133 (2002), 1463–1474, arXiv: nlin.SI/0205023 | DOI | MR
[9] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 23–37 | MR
[10] Dullin H.R., Gottwald G.A., Holm D.D., “On asymptotically equivalent shallow water wave equations”, Phys. D, 190 (2004), 1–14, arXiv: nlin.PS/0307011 | DOI | MR
[11] Freeman N.C., Nimmo J.J.C., “Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR
[12] Geng X., Xue B., “An extension of integrable peakon equations with cubic nonlinearity”, Nonlinearity, 22 (2009), 1847–1856 | DOI | MR
[13] Himonas A.A., Mantzavinos D., “The initial value problem for a Novikov system”, J. Math. Phys., 57 (2016), 071503, 21 pp. | DOI | MR
[14] Hone A.N.W., Lundmark H., Szmigielski J., “Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa–Holm type equation”, Dyn. Partial Differ. Equ., 6 (2009), 253–289, arXiv: 0903.3663 | DOI | MR
[15] Hone A.N.W., Wang J.P., “Integrable peakon equations with cubic nonlinearity”, J. Phys. A, 41 (2008), 372002, 10 pp., arXiv: 0805.4310 | DOI | MR
[16] Ivanov R.I., “Water waves and integrability”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267–2280, arXiv: 0707.1839 | DOI | MR
[17] Johnson R.S., “The classical problem of water waves: a reservoir of integrable and nearly-integrable equations”, J. Nonlinear Math. Phys., 10:1 (2003), 72–92 | DOI | MR
[18] Leble S.B., Ustinov N.V., “Third order spectral problems: reductions and Darboux transformations”, Inverse Problems, 10 (1994), 617–633 http://stacks.iop.org/0266-5611/10/617 | DOI | MR
[19] Lenells J., “Traveling wave solutions of the Degasperis–Procesi equation”, J. Math. Anal. Appl., 306 (2005), 72–82 | DOI | MR
[20] Li H., “Two-component generalizations of the Novikov equation”, J. Nonlinear Math. Phys., 26 (2019), 390–403 | DOI | MR
[21] Li H., Chai W., “A new Liouville transformation for the Geng–Xue system”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 93–101 | DOI | MR
[22] Li N., Liu Q.P., “On bi-Hamiltonian structure of two-component Novikov equation”, Phys. Lett. A, 377 (2013), 257–261 | DOI | MR
[23] Li N., Niu X., “A reciprocal transformation for the Geng–Xue equation”, J. Math. Phys., 55 (2014), 053505, 7 pp. | DOI | MR
[24] Li N., Wang G., Kuang Y., “Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach”, Theoret. and Math. Phys., 203 (2020), 608–620 | DOI | MR
[25] Li Y., Zhang J.E., “The multiple-soliton solution of the Camassa–Holm equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 2617–2627 | DOI | MR
[26] Lundmark H., Szmigielski J., “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19 (2003), 1241–1245, arXiv: nlin.SI/0503033 | DOI | MR
[27] Lundmark H., Szmigielski J., “Degasperis–Procesi peakons and the discrete cubic string”, Int. Math. Res. Pap., 2005 (2005), 53–116, arXiv: nlin.SI/0503036 | DOI | MR
[28] Lundmark H., Szmigielski J., An inverse spectral problem related to the Geng–Xue two-component peakon equation, Mem. Amer. Math. Soc., 244, 2016, vii+87 pp., arXiv: 1304.0854 | DOI | MR
[29] Lundmark H., Szmigielski J., “Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation”, J. Integrable Syst., 2 (2017), xyw014, 65 pp., arXiv: 1605.02805 | DOI | MR
[30] Matsuno Y., “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Problems, 21 (2005), 2085–2101, arXiv: nlin.SI/0511029 | DOI | MR
[31] Matsuno Y., “Smooth multisoliton solutions and their peakon limit of Novikov's Camassa–Holm type equation with cubic nonlinearity”, J. Phys. A, 46 (2013), 365203, 27 pp., arXiv: 1305.6728 | DOI | MR
[32] Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR
[33] Novikov V., “Generalizations of the Camassa–Holm equation”, J. Phys. A, 42 (2009), 342002, 14 pp., arXiv: 0905.2219 | DOI | MR
[34] Oevel W., Ragnisco O., “$R$-matrices and higher Poisson brackets for integrable systems”, Phys. A, 161 (1989), 181–220 | DOI | MR
[35] Shuaib B., Lundmark H., “Non-interlacing peakon solutions of the Geng–Xue equation”, J. Integrable Syst., 4 (2019), xyz007, 115 pp., arXiv: 1812.09173 | DOI | MR
[36] Tang H., Liu Z., “The Cauchy problem for a two-component Novikov equation in the critical Besov space”, J. Math. Anal. Appl., 423 (2015), 120–135 | DOI | MR
[37] Vakhnenko V.O., Parkes E.J., “Periodic and solitary-wave solutions of the Degasperis–Procesi equation”, Chaos Solitons Fractals, 20 (2004), 1059–1073 | DOI | MR
[38] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR
[39] Wu L., Li C., Li N., “Soliton solutions to the Novikov equation and a negative flow of the Novikov hierarchy”, Appl. Math. Lett., 87 (2019), 134–140 | DOI | MR
[40] Xia B., Zhou R., Qiao Z., “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57 (2016), 103502, 12 pp., arXiv: 1506.08639 | DOI | MR
[41] Zakharov V.E., “On stochastization of one-dimensional chains of nonlinear oscillators”, Soviet Phys. JETP, 38 (1974), 108–110