Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a reciprocal transformation which links the Geng–Xue equation to a particular reduction of the first negative flow of the Boussinesq hierarchy. We discuss two reductions of the reciprocal transformation for the Degasperis–Procesi and Novikov equations, respectively. With the aid of the Darboux transformation and the reciprocal transformation, we obtain a compact parametric representation for the smooth soliton solutions such as multi-kink solutions of the Geng–Xue equation.
Mots-clés : soliton, Darboux transformation, Lax pair.
@article{SIGMA_2022_18_a65,
     author = {Nianhua Li and Q. P. Liu},
     title = {Smooth {Multisoliton} {Solutions} of a {2-Component} {Peakon} {System} with {Cubic} {Nonlinearity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/}
}
TY  - JOUR
AU  - Nianhua Li
AU  - Q. P. Liu
TI  - Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/
LA  - en
ID  - SIGMA_2022_18_a65
ER  - 
%0 Journal Article
%A Nianhua Li
%A Q. P. Liu
%T Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/
%G en
%F SIGMA_2022_18_a65
Nianhua Li; Q. P. Liu. Smooth Multisoliton Solutions of a 2-Component Peakon System with Cubic Nonlinearity. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a65/

[1] Boutet de Monvel A., Shepelsky D., “A Riemann–Hilbert approach for the Degasperis–Procesi equation”, Nonlinearity, 26 (2013), 2081–2107, arXiv: 1107.5995 | DOI | MR

[2] Boutet de Monvel A., Shepelsky D., Zielinski L., “A Riemann–Hilbert approach for the Novikov equation”, SIGMA, 12 (2016), 095, 22 pp., arXiv: 1603.08842 | DOI | MR

[3] Chang X.-K., Hu X.-B., Li S.-H., “Degasperis–Procesi peakon dynamical system and finite Toda lattice of CKP type”, Nonlinearity, 31 (2018), 4746–4775, arXiv: 1712.08306 | DOI | MR

[4] Chang X.-K., Hu X.-B., Li S.-H., Zhao J.-X., “An application of Pfaffians to multipeakons of the Novikov equation and the finite Toda lattice of BKP type”, Adv. Math., 338 (2018), 1077–1118, arXiv: 1712.00965 | DOI | MR

[5] Constantin A., Ivanov R., “Dressing method for the Degasperis–Procesi equation”, Stud. Appl. Math., 138 (2017), 205–226, arXiv: 1608.02120 | DOI | MR

[6] Constantin A., Ivanov R.I., Lenells J., “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR

[7] Constantin A., Lannes D., “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192 (2009), 165–186, arXiv: 0709.0905 | DOI | MR

[8] Degasperis A., Holm D.D., Hone A.N.W., “A new integrable equation with peakon solutions”, Theoret. and Math. Phys., 133 (2002), 1463–1474, arXiv: nlin.SI/0205023 | DOI | MR

[9] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 23–37 | MR

[10] Dullin H.R., Gottwald G.A., Holm D.D., “On asymptotically equivalent shallow water wave equations”, Phys. D, 190 (2004), 1–14, arXiv: nlin.PS/0307011 | DOI | MR

[11] Freeman N.C., Nimmo J.J.C., “Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR

[12] Geng X., Xue B., “An extension of integrable peakon equations with cubic nonlinearity”, Nonlinearity, 22 (2009), 1847–1856 | DOI | MR

[13] Himonas A.A., Mantzavinos D., “The initial value problem for a Novikov system”, J. Math. Phys., 57 (2016), 071503, 21 pp. | DOI | MR

[14] Hone A.N.W., Lundmark H., Szmigielski J., “Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa–Holm type equation”, Dyn. Partial Differ. Equ., 6 (2009), 253–289, arXiv: 0903.3663 | DOI | MR

[15] Hone A.N.W., Wang J.P., “Integrable peakon equations with cubic nonlinearity”, J. Phys. A, 41 (2008), 372002, 10 pp., arXiv: 0805.4310 | DOI | MR

[16] Ivanov R.I., “Water waves and integrability”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), 2267–2280, arXiv: 0707.1839 | DOI | MR

[17] Johnson R.S., “The classical problem of water waves: a reservoir of integrable and nearly-integrable equations”, J. Nonlinear Math. Phys., 10:1 (2003), 72–92 | DOI | MR

[18] Leble S.B., Ustinov N.V., “Third order spectral problems: reductions and Darboux transformations”, Inverse Problems, 10 (1994), 617–633 http://stacks.iop.org/0266-5611/10/617 | DOI | MR

[19] Lenells J., “Traveling wave solutions of the Degasperis–Procesi equation”, J. Math. Anal. Appl., 306 (2005), 72–82 | DOI | MR

[20] Li H., “Two-component generalizations of the Novikov equation”, J. Nonlinear Math. Phys., 26 (2019), 390–403 | DOI | MR

[21] Li H., Chai W., “A new Liouville transformation for the Geng–Xue system”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 93–101 | DOI | MR

[22] Li N., Liu Q.P., “On bi-Hamiltonian structure of two-component Novikov equation”, Phys. Lett. A, 377 (2013), 257–261 | DOI | MR

[23] Li N., Niu X., “A reciprocal transformation for the Geng–Xue equation”, J. Math. Phys., 55 (2014), 053505, 7 pp. | DOI | MR

[24] Li N., Wang G., Kuang Y., “Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach”, Theoret. and Math. Phys., 203 (2020), 608–620 | DOI | MR

[25] Li Y., Zhang J.E., “The multiple-soliton solution of the Camassa–Holm equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 2617–2627 | DOI | MR

[26] Lundmark H., Szmigielski J., “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19 (2003), 1241–1245, arXiv: nlin.SI/0503033 | DOI | MR

[27] Lundmark H., Szmigielski J., “Degasperis–Procesi peakons and the discrete cubic string”, Int. Math. Res. Pap., 2005 (2005), 53–116, arXiv: nlin.SI/0503036 | DOI | MR

[28] Lundmark H., Szmigielski J., An inverse spectral problem related to the Geng–Xue two-component peakon equation, Mem. Amer. Math. Soc., 244, 2016, vii+87 pp., arXiv: 1304.0854 | DOI | MR

[29] Lundmark H., Szmigielski J., “Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation”, J. Integrable Syst., 2 (2017), xyw014, 65 pp., arXiv: 1605.02805 | DOI | MR

[30] Matsuno Y., “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Problems, 21 (2005), 2085–2101, arXiv: nlin.SI/0511029 | DOI | MR

[31] Matsuno Y., “Smooth multisoliton solutions and their peakon limit of Novikov's Camassa–Holm type equation with cubic nonlinearity”, J. Phys. A, 46 (2013), 365203, 27 pp., arXiv: 1305.6728 | DOI | MR

[32] Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR

[33] Novikov V., “Generalizations of the Camassa–Holm equation”, J. Phys. A, 42 (2009), 342002, 14 pp., arXiv: 0905.2219 | DOI | MR

[34] Oevel W., Ragnisco O., “$R$-matrices and higher Poisson brackets for integrable systems”, Phys. A, 161 (1989), 181–220 | DOI | MR

[35] Shuaib B., Lundmark H., “Non-interlacing peakon solutions of the Geng–Xue equation”, J. Integrable Syst., 4 (2019), xyz007, 115 pp., arXiv: 1812.09173 | DOI | MR

[36] Tang H., Liu Z., “The Cauchy problem for a two-component Novikov equation in the critical Besov space”, J. Math. Anal. Appl., 423 (2015), 120–135 | DOI | MR

[37] Vakhnenko V.O., Parkes E.J., “Periodic and solitary-wave solutions of the Degasperis–Procesi equation”, Chaos Solitons Fractals, 20 (2004), 1059–1073 | DOI | MR

[38] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR

[39] Wu L., Li C., Li N., “Soliton solutions to the Novikov equation and a negative flow of the Novikov hierarchy”, Appl. Math. Lett., 87 (2019), 134–140 | DOI | MR

[40] Xia B., Zhou R., Qiao Z., “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57 (2016), 103502, 12 pp., arXiv: 1506.08639 | DOI | MR

[41] Zakharov V.E., “On stochastization of one-dimensional chains of nonlinear oscillators”, Soviet Phys. JETP, 38 (1974), 108–110