Mots-clés : quantum Teichmüller spaces.
@article{SIGMA_2022_18_a63,
author = {Julien Korinman},
title = {Mapping {Class} {Group} {Representations} {Derived} from {Stated} {Skein} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a63/}
}
Julien Korinman. Mapping Class Group Representations Derived from Stated Skein Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a63/
[1] Alekseev A.Yu., Grosse H., Schomerus V., “Combinatorial quantization of the Hamiltonian Chern–Simons theory. I”, Comm. Math. Phys., 172 (1995), 317–358 | DOI | MR
[2] Alekseev A.Yu., Grosse H., Schomerus V., “Combinatorial quantization of the Hamiltonian Chern–Simons theory. II”, Comm. Math. Phys., 174 (1996), 561–604, arXiv: hep-th/9408097 | DOI | MR
[3] Alekseev A.Yu., Kosmann-Schwarzbach Y., Meinrenken E., “Quasi-Poisson manifolds”, Canad. J. Math., 54 (2002), 3–29, arXiv: math.DG/0006168 | DOI | MR
[4] Alekseev A.Yu., Malkin A.Z., “Symplectic structures associated to Lie–Poisson groups”, Comm. Math. Phys., 162 (1994), 147–173, arXiv: hep-th/9303038 | DOI | MR
[5] Alekseev A.Yu., Malkin A.Z., “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Comm. Math. Phys., 169 (1995), 99–119, arXiv: hep-th/9312004 | DOI | MR
[6] Alekseev A.Y., Schomerus V., “Representation theory of Chern–Simons observables”, Duke Math. J., 85 (1996), 447–510, arXiv: q-alg/9503016 | DOI | MR
[7] Ben-Zvi D., Brochier A., Jordan D., “Integrating quantum groups over surfaces”, J. Topol., 11 (2018), 874–917, arXiv: 1501.04652 | DOI | MR
[8] Ben-Zvi D., Brochier A., Jordan D., “Quantum character varieties and braided module categories”, Selecta Math. (N.S.), 24 (2018), 4711–4748, arXiv: 1606.04769 | DOI | MR
[9] Blanchet C., Costantino F., Geer N., Patureau-Mirand B., “Non-semi-simple TQFTs, Reidemeister torsion and Kashaev's invariants”, Adv. Math., 301 (2016), 1–78, arXiv: 1404.7289 | DOI | MR
[10] Bonahon F., Wong H., “Quantum traces for representations of surface groups in ${\rm SL}_2(\mathbb C)$”, Geom. Topol., 15 (2011), 1569–1615, arXiv: 1003.5250 | DOI | MR
[11] Bonahon F., Wong H., “Representations of the Kauffman bracket skein algebra I: invariants and miraculous cancellations”, Invent. Math., 204 (2016), 195–243, arXiv: 1206.1638 | DOI | MR
[12] Bonahon F., Wong H., “The Witten–Reshetikhin–Turaev representation of the Kauffman bracket skein algebra”, Proc. Amer. Math. Soc., 144 (2016), 2711–2724, arXiv: 1309.0921 | DOI | MR
[13] Bonahon F., Wong H., “Representations of the Kauffman bracket skein algebra II: Punctured surfaces”, Algebr. Geom. Topol., 17 (2017), 3399–3434, arXiv: 1206.1639 | DOI | MR
[14] Brown K.A., Goodearl K.R., Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002 | DOI | MR
[15] Brown K.A., Gordon I., “The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras”, Math. Z., 238 (2001), 733–779, arXiv: math.RT/9911234 | DOI | MR
[16] Brown K.A., Gordon I., “Poisson orders, symplectic reflection algebras and representation theory”, J. Reine Angew. Math., 559 (2003), 193–216, arXiv: math.RT/0201042 | DOI | MR
[17] Brown K.A., Yakimov M.T., “Azumaya loci and discriminant ideals of PI algebras”, Adv. Math., 340 (2018), 1219–1255, arXiv: 1702.04305 | DOI | MR
[18] Buffenoir E., Roche P., “Two-dimensional lattice gauge theory based on a quantum group”, Comm. Math. Phys., 170 (1995), 669–698, arXiv: hep-th/9405126 | DOI | MR
[19] Buffenoir E., Roche P., “Link invariants and combinatorial quantization of Hamiltonian Chern–Simons theory”, Comm. Math. Phys., 181 (1996), 331–365, arXiv: q-alg/9507001 | DOI | MR
[20] Bullock D., “A finite set of generators for the Kauffman bracket skein algebra”, Math. Z., 231 (1999), 91–101 | DOI | MR
[21] Bullock D., Frohman C., Kania-Bartoszyńska J., “Topological interpretations of lattice gauge field theory”, Comm. Math. Phys., 198 (1998), 47–81, arXiv: q-alg/9710003 | DOI | MR
[22] Cooke J., Excision of skein categories and factorisation homology, arXiv: 1910.02630
[23] Costantino F., Lê T.T.Q., “Stated skein algebras of surfaces”, J. Eur. Math. Soc. (to appear) , arXiv: 1907.11400 | DOI | MR
[24] Costantino F., Martelli B., “An analytic family of representations for the mapping class group of punctured surfaces”, Geom. Topol., 18 (2014), 1485–1538, arXiv: 1210.2666 | DOI | MR
[25] De Concini C., Kac V.G., “Representations of quantum groups at roots of $1$”, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., 92, Birkhäuser Boston, Boston, MA, 1990, 471–506 | MR
[26] De Concini C., Lyubashenko V., “Quantum function algebra at roots of $1$”, Adv. Math., 108 (1994), 205–262 | DOI | MR
[27] De Concini C., Procesi C., “Quantum groups”, $D$-Modules, Representation Theory, and Quantum Groups (Venice, 1992), Lecture Notes in Math., 1565, Springer, Berlin, 1993, 31–140 | DOI | MR
[28] De Renzi M., Gainutdinov A.M., Geer N., Patureau-Mirand B., Runkel I., Commun. Contemp. Math. (to appear) | DOI
[29] Drinfel'd V.G., “On constant quasiclassical solutions of the Yang–Baxter equations”, Soviet Math. Dokl., 28 (1983), 667–671 | MR
[30] Faitg M., Holonomy and (stated) skein algebras in combinatorial quantization, arXiv: 2003.08992
[31] Fock V.V., Rosly A.A., “Poisson structure on moduli of flat connections on Riemann surfaces and the $r$-matrix”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 67–86, arXiv: math.QA/9802054 | DOI | MR
[32] Frohman C., Kania-Bartoszynska J., Lê T., “Unicity for representations of the Kauffman bracket skein algebra”, Invent. Math., 215 (2019), 609–650, arXiv: 1707.09234 | DOI | MR
[33] Frohman C., Kania-Bartoszynska J., Lê T., “Dimension and trace of the Kauffman bracket skein algebra”, Trans. Amer. Math. Soc. Ser. B, 8 (2021), 510–547, arXiv: 1902.02002 | DOI | MR
[34] Ganev I., Jordan D., Safronov P., The quantum Frobenius for character varieties and multiplicative quiver varieties, arXiv: 1901.11450
[35] Gunningham S., Jordan D., Safronov P., The finiteness conjecture for skein modules, arXiv: 1908.05233
[36] Guruprasad K., Huebschmann J., Jeffrey L., Weinstein A., “Group systems, groupoids, and moduli spaces of parabolic bundles”, Duke Math. J., 89 (1997), 377–412, arXiv: dg-ga/9510006 | DOI | MR
[37] Habiro K., “A note on quantum fundamental groups and quantum representation varieties for $3$-manifolds”, RIMS Kōkyūroku, 1777, 2012, 21–30
[38] Haïoun B., “Relating stated skein algebras and internal skein algebras”, SIGMA, 18 (2022), 042, 39 pp., arXiv: 2104.13848 | DOI | MR
[39] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York – Heidelberg, 1977 | DOI | MR
[40] Higgins V., Triangular decomposition of ${\rm SL}_3$ skein algebras, arXiv: 2008.09419
[41] Hodges T.J., Levasseur T., “Primitive ideals of $C_q[{\rm SL}(3)]$”, Comm. Math. Phys., 156 (1993), 581–605 | DOI | MR
[42] Korinman J., “Decomposition of some Witten–Reshetikhin–Turaev representations into irreducible factors”, SIGMA, 15 (2019), 011, 25 pp., arXiv: 1406.4389 | DOI | MR
[43] Korinman J., Triangular decomposition of character varieties, arXiv: 1904.09022
[44] Korinman J., “Finite presentations for stated skein algebras and lattice gauge field theory”, Algebr. Geom. Topol. (to appear) , arXiv: 2012.03237
[45] Korinman J., Stated skein algebras and their representations, arXiv: 2105.09563
[46] Korinman J., “Stated skein algebras and their representations”, RIMS Kōkyūroku, 2191, 2021, 52–71
[47] Korinman J., “Unicity for representations of reduced stated skein algebras”, Topology Appl., 293 (2021), 107570, 28 pp., arXiv: 2001.00969 | DOI | MR
[48] Korinman J., Murakami J., Relating quantum character varieties and skein modules, in preparation
[49] Korinman J., Quesney A., Classical shadows of stated skein representations at odd roots of unity, arXiv: 1905.03441
[50] Korinman J., Quesney A., “The quantum trace as a quantum non-abelianization map”, J. Knot Theory Ramifications, 31 (2022), 2250032, 49 pp., arXiv: 1907.01177 | DOI | MR
[51] Lê T.T.Q., “Triangular decomposition of skein algebras”, Quantum Topol., 9 (2018), 591–632, arXiv: 1609.04987 | DOI | MR
[52] Lê T.T.Q., Yu T., “Stated skein modules of marked 3-manifolds/surfaces, a survey”, Acta Math. Vietnam., 46 (2021), 265–287, arXiv: 2005.14577 | DOI | MR
[53] Lê T.T.Q., Yu T., “Quantum traces and embeddings of stated skein algebras into quantum tori”, Selecta Math. (N.S.), 28 (2022), 66, 48 pp., arXiv: 2012.15272 | DOI | MR
[54] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR
[55] Przytycki J.H., Sikora A.S., “Skein algebras of surfaces”, Trans. Amer. Math. Soc., 371 (2019), 1309–1332, arXiv: 1602.07402 | DOI | MR
[56] Reiner I., Maximal orders, London Mathematical Society Monographs New Series, 28, The Clarendon Press, Oxford University Press, Oxford, 2003 | MR
[57] Reshetikhin N., Turaev V.G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR
[58] Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 2010 | DOI | MR