@article{SIGMA_2022_18_a62,
author = {Nicholas M. Ercolani and Jonathan Ramalheira-Tsu},
title = {A {Path-Counting} {Analysis} of {Phase} {Shifts} in {Box-Ball} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a62/}
}
TY - JOUR AU - Nicholas M. Ercolani AU - Jonathan Ramalheira-Tsu TI - A Path-Counting Analysis of Phase Shifts in Box-Ball Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a62/ LA - en ID - SIGMA_2022_18_a62 ER -
Nicholas M. Ercolani; Jonathan Ramalheira-Tsu. A Path-Counting Analysis of Phase Shifts in Box-Ball Systems. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a62/
[1] Adler M., “On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50 (1978), 219–248 | DOI | MR
[2] Aigner M., A course in enumeration, Graduate Texts in Mathematics, 238, Springer, Berlin, 2007 | DOI | MR
[3] Arnold V.I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer-Verlag, New York – Heidelberg, 1978 | DOI | MR
[4] Berenstein A., Fomin S., Zelevinsky A., “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122 (1996), 49–149 | DOI | MR
[5] Deift P., Li L.C., Tomei C., “Matrix factorizations and integrable systems”, Comm. Pure Appl. Math., 42 (1989), 443–521 | DOI | MR
[6] Drazin P.G., Johnson R.S., Solitons: an introduction, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989 | DOI | MR
[7] Ercolani N.M., Flaschka H., Haine L., “Painlevé balances and dressing transformations”, Painlevé Transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser. B: Phys., 278, Plenum, New York, 1992, 249–260 | DOI | MR
[8] Ercolani N.M., Flaschka H., Singer S., “The geometry of the full Kostant–Toda lattice”, Integrable Systems (Luminy, 1991), Progr. Math., 115, Birkhäuser Boston, Boston, MA, 1993, 181–225 | DOI | MR
[9] Ercolani N.M., Ramalheira-Tsu J., “The ghost-box-ball system: a unified perspective on soliton cellular automata, the RSK algorithm and phase shifts”, Phys. D, 426 (2021), 132986, 22 pp., arXiv: 2101.07896 | DOI | MR
[10] Flaschka H., “The Toda lattice. II Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI | MR
[11] Flaschka H., Haine L., “Variétés de drapeaux et réseaux de Toda”, Math. Z., 208 (1991), 545–556 | DOI | MR
[12] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR
[13] Kostant B., “On Whittaker vectors and representation theory”, Invent. Math., 48 (1978), 101–184 | DOI | MR
[14] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI | MR
[15] Kuniba A., Okado M., Sakamoto R., Takagi T., Yamada Y., “Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection”, Nuclear Phys. B, 740 (2006), 299–327, arXiv: math.QA/0601630 | DOI | MR
[16] Litvinov G.L., “Maslov dequantization, idempotent and tropical mathematics: A brief introduction”, J. Math. Sci., 140 (2007), 426–444, arXiv: math.GM/0507014 | DOI | MR
[17] Litvinov G.L., Maslov V.P., Rodionov A.Ya., Sobolevski A.N., “Universal algorithms, mathematics of semirings and parallel computations”, Coping with Complexity: Model Reduction and Data Analysis, Lect. Notes Comput. Sci. Eng., 75, Springer, Berlin, 2011, 63–89, arXiv: 1005.1252 | DOI | MR
[18] Lusztig G., “Total positivity in reductive groups”, Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, 531–568 | DOI | MR
[19] Marsh R.J., Rietsch K., “Parametrizations of flag varieties”, Represent. Theory, 8 (2004), 212–242, arXiv: math.RT/0307017 | DOI | MR
[20] Moser J., “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Phys., 38, Springer, Berlin, 1975, 467–497 | DOI | MR
[21] O'Connell N., “Geometric RSK and the Toda lattice”, Illinois J. Math., 57 (2013), 883–918, arXiv: 1308.4631 | DOI | MR
[22] Strang G., Essays in linear algebra, Wellesley-Cambridge Press, Wellesley, MA, 2012 | MR
[23] Symes W.W., “Hamiltonian group actions and integrable systems”, Phys. D, 1 (1980), 339–374 | DOI | MR
[24] Symes W.W., “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59 (1980), 13–51 | DOI | MR
[25] Takagi T., “Inverse scattering method for a soliton cellular automaton”, Nuclear Phys. B, 707 (2005), 577–601, arXiv: math-ph/0406038 | DOI | MR
[26] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR
[27] Toda M., “Vibration of a chain with a non-linear interaction”, J. Phys. Soc. Japan, 22 (1967), 431–436 | DOI
[28] Tokihiro T., “Ultradiscrete systems (cellular automata)”, Discrete integrable systems, Lecture Notes in Phys., 644, Springer, Berlin, 2004, 383–424 | DOI | MR
[29] Tokihiro T., Nagai A., Satsuma J., “Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization”, Inverse Problems, 15 (1999), 1639–1662 | DOI | MR
[30] Viro O., “Dequantization of real algebraic geometry on logarithmic paper”, European Congress of Mathematics (Barcelona, 2000), v. I, Progr. Math., 201, Birkhäuser, Basel, 2001, 135–146, arXiv: math.AG/0005163 | DOI | MR
[31] Watkins D.S., “Isospectral flows”, SIAM Rev., 26 (1984), 379–391 | DOI | MR