Mots-clés : symplectic random matrix ensemble
@article{SIGMA_2022_18_a6,
author = {Gernot Akemann and Sung-Soo Byun and Nam-Gyu Kang},
title = {Scaling {Limits} of {Planar} {Symplectic} {Ensembles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a6/}
}
Gernot Akemann; Sung-Soo Byun; Nam-Gyu Kang. Scaling Limits of Planar Symplectic Ensembles. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a6/
[1] Adler M., Forrester P. J., Nagao T., van Moerbeke P., “Classical skew orthogonal polynomials and random matrices”, J. Statist. Phys., 99 (2000), 141–170, arXiv: solv-int/9907001 | DOI | MR | Zbl
[2] Akemann G., “The complex Laguerre symplectic ensemble of non-Hermitian matrices”, Nuclear Phys. B, 730 (2005), 253–299, arXiv: hep-th/0507156 | DOI | MR | Zbl
[3] Akemann G., Basile F., “Massive partition functions and complex eigenvalue correlations in matrix models with symplectic symmetry”, Nuclear Phys. B, 766 (2007), 150–177, arXiv: math-ph/0606060 | DOI | MR | Zbl
[4] Akemann G., Bittner E., “Unquenched complex Dirac spectra at nonzero chemical potential: two-color QCD lattice data versus matrix model”, Phys. Rev. Lett., 96 (2006), 222002, 4 pp., arXiv: hep-lat/0603004 | DOI
[5] Akemann G., Byun S.-S., Kang N.-G., “A non-Hermitian generalisation of the Marchenko–Pastur distribution: from the circular law to multi-criticality”, Ann. Henri Poincaré, 22 (2021), 1035–1068, arXiv: 2004.07626 | DOI | Zbl
[6] Akemann G., Ebke M., Parra I., “Skew-orthogonal polynomials in the complex plane and their Bergman-like kernels”, Comm. Math. Phys., 389 (2022), 621–659, arXiv: 2103.12114 | DOI | MR | Zbl
[7] Akemann G., Kieburg M., Mielke A., Prosen T., “Universal signature from integrability to chaos in dissipative open quantum systems”, Phys. Rev. Lett., 123 (2019), 254101, 6 pp., arXiv: 1910.03520 | DOI | MR
[8] Akemann G., Phillips M. J., “The interpolating {A}iry kernels for the $\beta=1$ and $\beta=4$ elliptic {G}inibre ensembles”, J. Stat. Phys., 155 (2014), 421–465, arXiv: 1308.3418 | DOI | MR | Zbl
[9] Ameur Y., Repulsion in low temperature $\beta$-ensembles, Comm. Math. Phys., 359 (2018), 1079–1089, arXiv: 1701.04796 | DOI | MR | Zbl
[10] Ameur Y., Byun S.-S., Almost-Hermitian random matrices and bandlimited point processes, arXiv: 2101.03832
[11] Ameur Y., Hedenmalm H., Makarov N., “Fluctuations of eigenvalues of random normal matrices”, Duke Math. J., 159 (2011), 31–81, arXiv: 0807.0375 | DOI | MR | Zbl
[12] Ameur Y., Hedenmalm H., Makarov N., “Random normal matrices and Ward identities”, Ann. Probab., 43 (2015), 1157–1201, arXiv: 1109.5941 | DOI | MR | Zbl
[13] Ameur Y., Kang N.-G., Makarov N., “Rescaling Ward identities in the random normal matrix model”, Constr. Approx., 50 (2019), 63–127, arXiv: 1410.4132 | DOI | MR | Zbl
[14] Ameur Y., Kang N.-G., Makarov N., Wennman A., “Scaling limits of random normal matrix processes at singular boundary points”, J. Funct. Anal., 278 (2020), 108340, 46 pp., arXiv: 1510.08723 | DOI | MR | Zbl
[15] Ameur Y., Kang N.-G., Seo S.-M., “The random normal matrix model: insertion of a point charge”, Potential Anal. (to appear) , arXiv: 1804.08587 | DOI
[16] Balogh F., Grava T., Merzi D., “Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane”, Constr. Approx., 46 (2017), 109–169, arXiv: 1509.05331 | DOI | MR | Zbl
[17] Benaych-Georges F., Chapon F., “Random right eigenvalues of Gaussian quaternionic matrices”, Random Matrices Theory Appl., 1 (2012), 1150009, 18 pp., arXiv: 1104.4455 | DOI | MR | Zbl
[18] Bertola M., Elias Rebelo J. G., Grava T., “Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane”, SIGMA, 14 (2018), 091, 34 pp., arXiv: 1802.01153 | DOI | Zbl
[19] Bertola M., Eynard B., Harnad J., “Duality, biorthogonal polynomials and multi-matrix models”, Comm. Math. Phys., 229 (2002), 73–120, arXiv: nlin.SI/0108049 | DOI | MR | Zbl
[20] Borodin A., Sinclair C. D., “The Ginibre ensemble of real random matrices and its scaling limits”, Comm. Math. Phys., 291 (2009), 177–224, arXiv: 0805.2986 | DOI | MR | Zbl
[21] Byun S.-S., Ebke M., Universal scaling limits of the symplectic elliptic Ginibre ensemble, arXiv: 2108.05541
[22] Byun S.-S., Ebke M., Seo S.-M., Wronskian structures of planar symplectic ensembles, arXiv: 2110.12196
[23] Byun S.-S., Lee S.-Y., Yang M., Lemniscate ensembles with spectral singularity, arXiv: 2107.07221
[24] Cardoso G., Stéphan J.-M., Abanov A. G., “The boundary density profile of a Coulomb droplet. Freezing at the edge”, J. Phys. A: Math. Theor., 54 (2021), 015002, 24 pp., arXiv: 2009.02359 | DOI
[25] Chau L.-L., Zaboronsky O., “On the structure of correlation functions in the normal matrix model”, Comm. Math. Phys., 196 (1998), 203–247 | DOI | MR | Zbl
[26] Dahlhaus J. P., Béri B., Beenakker C. W. J., “Random-matrix theory of thermal conduction in superconducting quantum dots”, Phys. Rev. B, 82 (2010), 014536, 7 pp., arXiv: 1004.2438 | DOI
[27] Dubach G., “Symmetries of the quaternionic Ginibre ensemble”, Random Matrices Theory Appl., 10 (2021), 2150013, 19 pp., arXiv: 1811.03724 | DOI | MR | Zbl
[28] Fischmann J., Bruzda W., Khoruzhenko B. A., Sommers H.-J., Życzkowski K., “Induced {G}inibre ensemble of random matrices and quantum operations”, J. Phys. A: Math. Theor., 45 (2012), 075203, 31 pp., arXiv: 1107.5019 | DOI | MR | Zbl
[29] Forrester P. J., “Analogies between random matrix ensembles and the one-component plasma in two-dimensions”, Nuclear Phys. B, 904 (2016), 253–281, arXiv: 1511.02946 | DOI | MR | Zbl
[30] Forrester P. J., Honner G., “Exact statistical properties of the zeros of complex random polynomials”, J. Phys. A: Math. Gen., 32 (1999), 2961–2981, arXiv: cond-mat/9812388 | DOI | Zbl
[31] Ginibre J., “Statistical ensembles of complex, quaternion, and real matrices”, J. Math. Phys., 6 (1965), 440–449 | DOI | MR | Zbl
[32] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014 | DOI | Zbl
[33] Hedenmalm H., Wennman A., “Planar orthogogonal polynomials and boundary universality in the random normal matrix model”, Acta Math., 227 (2021), 309–406, arXiv: 1710.06493 | DOI | MR
[34] Ipsen J. R., “Products of independent quaternion Ginibre matrices and their correlation functions”, J. Phys. A: Math. Theor., 46 (2013), 265201, 16 pp., arXiv: 1301.3343 | DOI | MR | Zbl
[35] Kanzieper E., “Eigenvalue correlations in non-Hermitean symplectic random matrices”, J. Phys. A: Math. Gen., 35 (2002), 6631–6644, arXiv: cond-mat/0109287 | DOI | MR | Zbl
[36] Kanzieper E., “Exact replica treatment of non-Hermitean complex random matrices”, Frontiers in Field Theory, ed. O. Kovras, Nova Science Publishers, New York, 2005, 23–51, arXiv: cond-mat/0109287
[37] Khoruzhenko B. A., Lysychkin S., Truncations of random symplectic unitary matrices, arXiv: 2111.02381
[38] Khoruzhenko B. A., Lysychkin S., Scaling limits of eigenvalue statistics in the quaternion-real Ginibre ensemble, in preparation
[39] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | Zbl
[40] Kolesnikov A. V., Efetov K. B., “Distribution of complex eigenvalues for symplectic ensembles of non-Hermitian matrices”, Waves Random Media, 9 (1999), 71–82, arXiv: cond-mat/9809173 | DOI | Zbl
[41] Lee S.-Y., Riser R., “Fine asymptotic behavior for eigenvalues of random normal matrices: ellipse case”, J. Math. Phys., 57 (2016), 023302, 29 pp., arXiv: 1501.02781 | DOI | MR | Zbl
[42] Lee S.-Y., Yang M., “Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a perturbation of the Gaussian weight”, Comm. Math. Phys., 355 (2017), 303–338, arXiv: 1607.02821 | DOI | MR | Zbl
[43] Lysychkin S., Complex eigenvalues of high dimensional quaternion random matrices, Ph.D. Thesis, Queen Mary University of London, UK, 2021
[44] Mehta M. L., Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991 | Zbl
[45] Olver F. W.J., Lozier D. W., Boisvert R. F., Clark C. W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010 | Zbl
[46] Rider B., “A limit theorem at the edge of a non-Hermitian random matrix ensemble”, J. Phys. A: Math. Gen., 36 (2003), 3401–3409 | DOI | Zbl
[47] Serfaty S., “Microscopic description of Log and Coulomb gases”, Random Matrices, IAS/Park City Math. Ser., 26, Amer. Math. Soc., Providence, RI, 2019, 341–387, arXiv: 1709.04089 | DOI | Zbl
[48] Widom H., “On the relation between orthogonal, symplectic and unitary matrix ensembles”, J. Statist. Phys., 94 (1999), 347–363, arXiv: solv-int/9804005 | DOI | MR | Zbl
[49] Życzkowski K., Sommers H.-J., “Truncations of random unitary matrices”, J. Phys. A: Math. Gen., 33 (2000), 2045–2057, arXiv: chao-dyn/9910032 | DOI