The Gauge Group and Perturbation Semigroup of an Operator System
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The perturbation semigroup was first defined in the case of $*$-algebras by Chamseddine, Connes and van Suijlekom. In this paper, we take $\mathcal{E}$ as a concrete operator system with unit. We first give a definition of gauge group $\mathcal{G}(\mathcal{E})$ of $\mathcal{E}$, after that we give the definition of perturbation semigroup of $\mathcal{E}$, and the closed perturbation semigroup of $\mathcal{E}$ with respect to the Haagerup tensor norm. We also show that there is a continuous semigroup homomorphism from the closed perturbation semigroup to the collection of unital completely bounded Hermitian maps over $\mathcal{E}$. Finally we compute the gauge group and perturbation semigroup of the Toeplitz system as an example.
Keywords: operator algebras, operator systems, functional analysis, noncommutative geometry.
@article{SIGMA_2022_18_a59,
     author = {Rui Dong},
     title = {The {Gauge} {Group} and {Perturbation} {Semigroup} of an {Operator} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a59/}
}
TY  - JOUR
AU  - Rui Dong
TI  - The Gauge Group and Perturbation Semigroup of an Operator System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a59/
LA  - en
ID  - SIGMA_2022_18_a59
ER  - 
%0 Journal Article
%A Rui Dong
%T The Gauge Group and Perturbation Semigroup of an Operator System
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a59/
%G en
%F SIGMA_2022_18_a59
Rui Dong. The Gauge Group and Perturbation Semigroup of an Operator System. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a59/

[1] Arveson W.B., “Subalgebras of $C^{\ast} $-algebras”, Acta Math., 123 (1969), 141–224 | DOI | MR

[2] Blecher D.P., Le Merdy C., Operator algebras and their modules – an operator space approach, London Mathematical Society Monographs. New Series, 30, Oxford University Press, Oxford, 2004 | DOI | MR

[3] Chamseddine A.H., Connes A., van Suijlekom W.D., “Inner fluctuations in noncommutative geometry without the first order condition”, J. Geom. Phys., 73 (2013), 222–234, arXiv: 1304.7583 | DOI | MR

[4] Connes A., van Suijlekom W.D., “Spectral truncations in noncommutative geometry and operator systems”, Comm. Math. Phys., 383 (2021), 2021–2067, arXiv: 2004.14115 | DOI | MR

[5] Effros E.G., Kishimoto A., “Module maps and Hochschild–Johnson cohomology”, Indiana Univ. Math. J., 36 (1987), 257–276 | DOI | MR

[6] Effros E.G., Ruan Z.-J., Operator spaces, London Mathematical Society Monographs. New Series, 23, The Clarendon Press, Oxford University Press, New York, 2000 | MR

[7] Farenick D., “The operator system of Toeplitz matrices”, Trans. Amer. Math. Soc. Ser. B, 8 (2021), 999–1023, arXiv: 2103.16546 | DOI | MR

[8] Hesp L., The perturbation semigroup of $C^*$-algebras, Master's Thesis, Radboud University Nijmegen, 2016

[9] Kraus K., “General state changes in quantum theory”, Ann. Physics, 64 (1971), 311–335 | DOI | MR

[10] Neumann N., van Suijlekom W.D., “Perturbation semigroup of matrix algebras”, J. Noncommut. Geom., 10 (2016), 245–264, arXiv: 1410.5961 | DOI | MR

[11] Paulsen V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78, Cambridge University Press, Cambridge, 2002 | DOI | MR

[12] Pisier G., Introduction to operator space theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, Cambridge, 2003 | DOI | MR

[13] Poluikis J.A., Hill R.D., “Completely positive and Hermitian-preserving linear transformations”, Linear Algebra Appl., 35 (1981), 1–10 | DOI | MR

[14] ter Horst S., van der Merwe A., “Hill representations for $*$-linear matrix maps”, Indag. Math. (N.S.), 33 (2022), 334–356, arXiv: 2103.14500 | DOI | MR

[15] van Suijlekom W.D., Noncommutative geometry and particle physics, Mathematical Physics Studies, Springer, Dordrecht, 2015 | DOI | MR