Node Polynomials for Curves on Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We complete the proof of a theorem we announced and partly proved in [Math. Nachr. 271 (2004), 69–90, math.AG/0111299]. The theorem concerns a family of curves on a family of surfaces. It has two parts. The first was proved in that paper. It describes a natural cycle that enumerates the curves in the family with precisely $r$ ordinary nodes. The second part is proved here. It asserts that, for $r\le 8$, the class of this cycle is given by a computable universal polynomial in the pushdowns to the parameter space of products of the Chern classes of the family.
Keywords: enumerative geometry, nodal curves, nodal polynomials, Bell polynomials, Enriques diagrams, Hilbert schemes.
@article{SIGMA_2022_18_a58,
     author = {Steven Kleiman and Ragni Piene},
     title = {Node {Polynomials} for {Curves} on {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a58/}
}
TY  - JOUR
AU  - Steven Kleiman
AU  - Ragni Piene
TI  - Node Polynomials for Curves on Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a58/
LA  - en
ID  - SIGMA_2022_18_a58
ER  - 
%0 Journal Article
%A Steven Kleiman
%A Ragni Piene
%T Node Polynomials for Curves on Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a58/
%G en
%F SIGMA_2022_18_a58
Steven Kleiman; Ragni Piene. Node Polynomials for Curves on Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a58/

[1] Altman A.B., Iarrobino A., Kleiman S.L., “Irreducibility of the compactified Jacobian”, Real and Complex Singularities, Proc. Ninth Nordic Summer School/NAVF Sympos. Math. (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 1–12 | MR

[2] Basu S., Mukherjee R., Counting curves in a linear system with up to eight singular points

[3] Bell E.T., “Partition polynomials”, Ann. of Math., 29 (1927/28), 38–46 | DOI | MR

[4] Caporaso L., “Enumerative geometry of plane curves”, Notices Amer. Math. Soc., 67 (2020), 771–779 | DOI | MR

[5] Das N., Mukherjee R., “Counting planar curves in $\mathbb{P}^3$ with degenerate singularities”, Bull. Sci. Math., 173 (2021), 103065, 64 pp., arXiv: 2007.11933 | DOI | MR

[6] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR

[7] Esteves E., Gagné M., Kleiman S., “Autoduality of the compactified Jacobian”, J. London Math. Soc., 65 (2002), 591–610, arXiv: math.AG/9911071 | DOI | MR

[8] Fulton W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 2, Springer-Verlag, Berlin, 1984 | DOI | MR

[9] Göttsche L., “A conjectural generating function for numbers of curves on surfaces”, Comm. Math. Phys., 196 (1998), 523–533, arXiv: alg-geom/9711012 | DOI | MR

[10] Grothendieck A., Dieudonné J.A., “Éléments de géométrie algébrique. IV Étude locale des schémas et des morphismes de schémas. III”, Inst. Hautes Études Sci. Publ. Math., 28 (1966), 5–255 | DOI | MR

[11] Grothendieck A., Dieudonné J.A., “Éléments de géométrie algébrique. IV Étude locale des schémas et des morphismes de schémas. IV”, Inst. Hautes Études Sci. Publ. Math., 32 (1967), 5–333 | DOI | MR

[12] Hartshorne R., Deformation theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010 | DOI | MR

[13] Kazarian M.E., “Multisingularities, cobordisms, and enumerative geometry”, Russian Math. Surveys, 58 (2003), 665–724 | DOI | MR

[14] Kleiman S., “Intersection theory and enumerative geometry: a decade in review”, Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, 1987, 321–370 | DOI | MR

[15] Kleiman S., Piene R., “Enumerating singular curves on surfaces”, Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 209–238, arXiv: math.AG/9903192 | DOI | MR

[16] Kleiman S., Piene R., “Node polynomials for families: methods and applications”, Math. Nachr., 271 (2004), 69–90, arXiv: math.AG/0111299 | DOI | MR

[17] Kleiman S., Piene R., “Enriques diagrams, arbitrarily near points, and Hilbert schemes (with Appendix B by Ilya Tyomkin)”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 22 (2011), 411–451, arXiv: 0905.2169 | DOI | MR

[18] Kool M., Shende V., Thomas R.P., “A short proof of the Göttsche conjecture”, Geom. Topol., 15 (2011), 397–406, arXiv: 1010.3211 | DOI | MR

[19] Laarakker T., “The Kleiman–Piene conjecture and node polynomials for plane curves in $\mathbb P^3$”, Selecta Math. (N.S.), 24 (2018), 4917–4959, arXiv: 1710.02085 | DOI | MR

[20] Li J., Tzeng Y.-J., “Universal polynomials for singular curves on surfaces”, Compos. Math., 150 (2014), 1169–1182, arXiv: 1203.3180 | DOI | MR

[21] Mukherjee R., Paul A., Singh R.K., “Enumeration of rational curves in a moving family of $\mathbb{P}^2$”, Bull. Sci. Math., 150 (2019), 1–11, arXiv: 1808.04237 | DOI | MR

[22] Mukherjee R., Singh R.K., “Rational cuspidal curves in a moving family of $\mathbb{P}^2$”, Complex Manifolds, 8 (2021), 125–137, arXiv: 2005.10664 | DOI | MR

[23] Rennemo J.V., “Universal polynomials for tautological integrals on Hilbert schemes”, Geom. Topol., 21 (2017), 253–314, arXiv: 1205.1851 | DOI | MR

[24] The Stacks Project Authors, Stacks Project, , 2022 https://stacks.math.columbia.edu/

[25] Thorup A., “Rational equivalence theory on arbitrary Noetherian schemes”, Enumerative Geometry (Sitges, 1987), Lecture Notes in Math., 1436, Springer, Berlin, 1990, 256–297 | DOI | MR

[26] Tzeng Y.-J., “A proof of the Göttsche–Yau–Zaslow formula”, J. Differential Geom., 90 (2012), 439–472, arXiv: 1009.5371 | DOI | MR

[27] Vainsencher I., “Enumeration of $n$-fold tangent hyperplanes to a surface”, J. Algebraic Geom., 4 (1995), 503–526, arXiv: alg-geom/9312012 | MR