Systolic Inequalities for Compact Quotients of Carnot Groups with Popp's Volume
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we give a systolic inequality for a quotient space of a Carnot group $\Gamma\backslash G$ with Popp's volume. Namely we show the existence of a positive constant $C$ such that the systole of $\Gamma\backslash G$ is less than ${\rm Cvol}(\Gamma\backslash G)^{\frac{1}{Q}}$, where $Q$ is the Hausdorff dimension. Moreover, the constant depends only on the dimension of the grading of the Lie algebra $\mathfrak{g}=\bigoplus V_i$. To prove this fact, the scalar product on $G$ introduced in the definition of Popp's volume plays a key role.
Keywords: sub-Riemannian geometry, Carnot groups, Popp's volume, systole.
@article{SIGMA_2022_18_a57,
     author = {Kenshiro Tashiro},
     title = {Systolic {Inequalities} for {Compact} {Quotients} of {Carnot} {Groups} with {Popp's} {Volume}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a57/}
}
TY  - JOUR
AU  - Kenshiro Tashiro
TI  - Systolic Inequalities for Compact Quotients of Carnot Groups with Popp's Volume
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a57/
LA  - en
ID  - SIGMA_2022_18_a57
ER  - 
%0 Journal Article
%A Kenshiro Tashiro
%T Systolic Inequalities for Compact Quotients of Carnot Groups with Popp's Volume
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a57/
%G en
%F SIGMA_2022_18_a57
Kenshiro Tashiro. Systolic Inequalities for Compact Quotients of Carnot Groups with Popp's Volume. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a57/

[1] Agrachev A., Barilari D., Boscain U., “On the Hausdorff volume in sub-Riemannian geometry”, Calc. Var. Partial Differential Equations, 43 (2012), 355–388, arXiv: 1005.0540 | DOI | MR

[2] Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry, Cambridge Studies in Advanced Mathematics, 181, Cambridge University Press, Cambridge, 2020 | DOI | MR

[3] Barilari D., Rizzi L., “A formula for Popp's volume in sub-Riemannian geometry”, Anal. Geom. Metr. Spaces, 1 (2013), 42–57, arXiv: 1211.2325 | DOI | MR

[4] Bavard C., “Inégalité isosystolique pour la bouteille de Klein”, Math. Ann., 274 (1986), 439–441 | DOI | MR

[5] Bellaïche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian Geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 1–78 | DOI | MR

[6] Gromov M., “Filling Riemannian manifolds”, J. Differential Geom., 18 (1983), 1–147 | DOI | MR

[7] Gromov M., “Systoles and intersystolic inequalities”, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., 1, Soc. Math. France, Paris, 1996, 291–362 | MR

[8] Hassannezhad A., Kokarev G., “Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16 (2016), 1049–1092, arXiv: 1407.0358 | DOI | MR

[9] Hebda J.J., “Some lower bounds for the area of surfaces”, Invent. Math., 65 (1982), 485–490 | DOI | MR

[10] Mitchell J., “On Carnot–Carathéodory metrics”, J. Differential Geom., 21 (1985), 35–45 | DOI | MR

[11] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, 91, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR

[12] Pu P.M., “Some inequalities in certain nonorientable Riemannian manifolds”, Pacific J. Math., 2 (1952), 55–71 | DOI | MR