Mots-clés : $q$-Painlevé equation, $q$-Heun equation
@article{SIGMA_2022_18_a55,
author = {Shoko Sasaki and Shun Takagi and Kouichi Takemura},
title = {$q${-Middle} {Convolution} and $q${-Painlev\'e} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a55/}
}
Shoko Sasaki; Shun Takagi; Kouichi Takemura. $q$-Middle Convolution and $q$-Painlevé Equation. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a55/
[1] Aomoto K., “On the 3 fundamental problems concerning $q$-basic hypergeometric functions ($q$-difference equations, asymptotic behaviours and connection problem)”, Proceedinds of Fifth Oka Symposium (March 18–19, 2006, Nara), Oka Mathematical Institute, Japan, 2006, 16 pp. (in Japanese) http://www.nara-wu.ac.jp/omi/oka_symposium/05/aomoto.pdf
[2] Arai Y., Takemura K., On $q$-middle convolution and $q$-hypergeometric equations, in preparation
[3] Dettweiler M., Reiter S., “An algorithm of Katz and its application to the inverse Galois problem”, J. Symbolic Comput., 30 (2000), 761–798 | DOI | MR
[4] Dettweiler M., Reiter S., “Middle convolution of Fuchsian systems and the construction of rigid differential systems”, J. Algebra, 318 (2007), 1–24 | DOI | MR
[5] Filipuk G., “On the middle convolution and birational symmetries of the sixth Painlevé equation”, Kumamoto J. Math., 19 (2006), 15–23 | MR
[6] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR
[7] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of Painlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR
[8] Katz N.M., Rigid local systems, Annals of Mathematics Studies, 139, Princeton University Press, Princeton, NJ, 1996 | DOI | MR
[9] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR
[10] Sakai H., Yamaguchi M., “Spectral types of linear $q$-difference equations and $q$-analog of middle convolution”, Int. Math. Res. Not., 2017 (2017), 1975–2013, arXiv: 1410.3674 | DOI | MR
[11] Sasaki S., Takagi S., Takemura K., “$q$-Heun equation and initial-value space of $q$-Painlevé equation”, Proceedings of the Conference FASnet21 (to appear)
[12] Takagi S., Application of $q$-middle convolution to $q$-sixth Painlevé equation, Master Thesis, Chuo University, 2021 (in Japanese)
[13] Takemura K., “Integral representation of solutions to Fuchsian system and Heun's equation”, J. Math. Anal. Appl., 342 (2008), 52–69, arXiv: 0705.3358 | DOI | MR
[14] Takemura K., “Middle convolution and Heun's equation”, SIGMA, 5 (2009), 040, 22 pp., arXiv: 0810.3112 | DOI | MR
[15] Takemura K., “Degenerations of Ruijsenaars–van Diejen operator and $q$-Painlevé equations”, J. Integrable Syst., 2 (2017), xyx008, 27 pp., arXiv: 1608.07265 | DOI | MR
[16] Takemura K., “On $q$-deformations of the Heun equation”, SIGMA, 14 (2018), 061, 16 pp., arXiv: 1712.09564 | DOI | MR