Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop an algebraic theory of colored, semigrouplike-flavored and pathlike co-, bi- and Hopf algebras. This is the right framework in which to discuss antipodes for bialgebras naturally appearing in combinatorics, topology, number theory and physics. In particular, we can precisely give conditions for the invertibility of characters that is needed for renormalization in the formulation of Connes and Kreimer. These are met in the relevant examples. In order to construct antipodes, we discuss formal localization constructions and quantum deformations. These allow to define and explain the appearance of Brown style coactions. Using previous results, we can interpret all the relevant coalgebras as stemming from a categorical construction, tie the bialgebra structures to Feynman categories, and apply the developed theory in this setting.
Keywords: Feynman category, bialgebra, Hopf algebra, renomalization, characters, combinatorial coalgebra, graphs, trees, Rota–Baxter, colored structures.
Mots-clés : antipodes
@article{SIGMA_2022_18_a52,
     author = {Ralph M. Kaufmann and Yang Mo},
     title = {Pathlike {Co/Bialgebras} and their {Antipodes} with {Applications} to {Bi-} and {Hopf} {Algebras} {Appearing} in {Topology,} {Number} {Theory} and {Physics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/}
}
TY  - JOUR
AU  - Ralph M. Kaufmann
AU  - Yang Mo
TI  - Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/
LA  - en
ID  - SIGMA_2022_18_a52
ER  - 
%0 Journal Article
%A Ralph M. Kaufmann
%A Yang Mo
%T Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/
%G en
%F SIGMA_2022_18_a52
Ralph M. Kaufmann; Yang Mo. Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/

[1] Andruskiewitsch N., Ferrer Santos W., “The beginnings of the theory of Hopf algebras”, Acta Appl. Math., 108 (2009), 3–17 | DOI | MR

[2] Artin M., Noncommutaive rings, Course notes, 1999 http://www-math.mit.edu/ẽtingof/artinnotes.pdf

[3] Atkinson F.V., “Some aspects of Baxter's functional equation”, J. Math. Anal. Appl., 7 (1963), 1–30 | DOI | MR

[4] Baues H.J., “The double bar and cobar constructions”, Compositio Math., 43 (1981), 331–341 | MR

[5] Berger C., Kaufmann R.M., Trees, graphs and aggregates: a categorical perspective on combinatorial surface topology, geometry, and algebra, arXiv: 2201.10537

[6] Berger C., Kaufmann R.M., Derived decorated Feynman categories, in preparation

[7] Brown F., Motivic periods and the projective line minus three points, arXiv: 1407.5165

[8] Brown F., “Feynman amplitudes, coaction principle, and cosmic Galois group”, Commun. Number Theory Phys., 11 (2017), 453–556, arXiv: 1512.06409 | DOI | MR

[9] Butcher J.C., “An algebraic theory of integration methods”, Math. Comp., 26 (1972), 79–106 | DOI | MR

[10] Cartier P., “A primer of Hopf algebras”, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 537–615 | DOI | MR

[11] Chen C.Y., Nichols W.D., “A duality theorem for Hopf module algebras over Dedekind rings”, Comm. Algebra, 18 (1990), 3209–3221 | DOI | MR

[12] Chen K.-T., “Iterated integrals of differential forms and loop space homology”, Ann. of Math., 97 (1973), 217–246 | DOI | MR

[13] Connes A., Kreimer D., “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., 199 (1998), 203–242, arXiv: hep-th/9808042 | DOI | MR

[14] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. I The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210 (2000), 249–273, arXiv: hep-th/9912092 | DOI | MR

[15] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. II The $\beta$-function, diffeomorphisms and the renormalization group”, Comm. Math. Phys., 216 (2001), 215–241, arXiv: hep-th/0003188 | DOI | MR

[16] Dijkgraaf R., Pasquier V., Roche P., “Quasi Hopf algebras, group cohomology and orbifold models”, Nuclear Phys. B Proc. Suppl., 18 (1990), 60–72 | DOI | MR

[17] Duffaut Espinosa L.A., Ebrahimi-Fard K., Gray W.S., “A combinatorial Hopf algebra for nonlinear output feedback control systems”, J. Algebra, 453 (2016), 609–643, arXiv: 1406.5396 | DOI | MR

[18] Dür A., Möbius functions, incidence algebras and power series representations, Lecture Notes in Math., 1202, Springer-Verlag, Berlin, 1986 | DOI | MR

[19] Ebrahimi-Fard K., Guo L., Kreimer D., “Integrable renormalization. II The general case”, Ann. Henri Poincaré, 6 (2005), 369–395, arXiv: hep-th/0403118 | DOI | MR

[20] Ebrahimi-Fard K., Kreimer D., “The Hopf algebra approach to Feynman diagram calculations”, J. Phys. A: Math. Gen., 38 (2005), R385–R407, arXiv: hep-th/0510202 | DOI | MR

[21] Fiedorowicz Z., Loday J.-L., “Crossed simplicial groups and their associated homology”, Trans. Amer. Math. Soc., 326 (1991), 57–87 | DOI | MR

[22] Foissy L., “Les algèbres de Hopf des arbres enracinés décorés. II”, Bull. Sci. Math., 126 (2002), 249–288, arXiv: math.QA/0105212 | DOI | MR

[23] Foissy L., Cointeracting bialgebras, Talk at Algebraic Structures in Perturbative Quantum Field Theory, IHES, November 2020

[24] Gálvez-Carrillo I., Kaufmann R.M., Tonks A., “Three Hopf algebras from number theory, physics topology, and their common background I: operadic simplicial aspects”, Commun. Number Theory Phys., 14 (2020), 1–90, arXiv: 1607.00196 | DOI | MR

[25] Gálvez-Carrillo I., Kaufmann R.M., Tonks A., “Three Hopf algebras from number theory, physics topology, and their common background II: general categorical formulation”, Commun. Number Theory Phys., 14 (2020), 91–169, arXiv: 1607.00196 | DOI | MR

[26] Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monographs in Mathematics, 2nd ed.,, Springer-Verlag, Berlin, 2003 | DOI | MR

[27] Goncharov A.B., “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128 (2005), 209–284, arXiv: math.AG/0208144 | DOI | MR

[28] Guo L., An introduction to Rota–Baxter algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012 | MR

[29] Joni S.A., Rota G.-C., “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61 (1979), 93–139 | DOI | MR

[30] Joyal A., On disks, dualities, and $\Theta$ categories, Preprint, 1997

[31] Joyal A., Street R., “Braided tensor categories”, Adv. Math., 102 (1993), 20–78 | DOI | MR

[32] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR

[33] Kaufmann R.M., “Orbifolding Frobenius algebras”, Internat. J. Math., 14 (2003), 573–617, arXiv: math.AG/0107163 | DOI | MR

[34] Kaufmann R.M., “On spineless cacti, Deligne's conjecture and Connes–Kreimer's Hopf algebra”, Topology, 46 (2007), 39–88 | DOI | MR

[35] Kaufmann R.M., “Lectures on Feynman categories”, 2016 MATRIX Annals, MATRIX Book Ser., 1, Springer, Cham, 2018, 375–438, arXiv: 1702.06843 | DOI | MR

[36] Kaufmann R.M., “Feynman categories and representation theory”, Representations of Algebras, Geometry and Physics, Contemp. Math., 769, Amer. Math. Soc., Providence, RI, 2021, 11–84, arXiv: 1911.10169 | DOI | MR

[37] Kaufmann R.M., B-plus operators in field theory, Feynman categories and Hopf algebras, in preparation | MR

[38] Kaufmann R.M., Manin Yu., Zagier D., “Higher Weil–Petersson volumes of moduli spaces of stable $n$-pointed curves”, Comm. Math. Phys., 181 (1996), 763–787, arXiv: alg-geom/9604001 | DOI | MR

[39] Kaufmann R.M., Medina-Mardones A.M., “Cochain level May–Steenrod operations”, Forum Math., 33 (2021), 1507–1526, arXiv: 2010.02571 | DOI | MR

[40] Kaufmann R.M., Pham D., “The Drinfel'd double and twisting in stringy orbifold theory”, Internat. J. Math., 20 (2009), 623–657, arXiv: 0708.4006 | DOI | MR

[41] Kaufmann R.M., Ward B.C., Feynman categories, Astérisque, 387, 2017, vii+161 pp., arXiv: 1312.1269 | MR

[42] Kaufmann R.M., Yang M., Higher categorical Hopf algebras, in preparation

[43] Kaufmann R.M., Zhang Y., “Permutohedral structures on $E_2$-operads”, Forum Math., 29 (2017), 1371–1411 | DOI | MR

[44] Kreimer D., “The core Hopf algebra”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 313–321, arXiv: 0902.1223 | DOI | MR

[45] Kreimer D., Cutkosky rules from outer space, arXiv: 1607.04861

[46] Kreimer D., Yeats K., Algebraic interplay between renormalization and monodromy, arXiv: 2105.05948

[47] Leroux P., “Les catégories de Möbius”, Cah. Topol. Géom. Différ., 16 (1975), 280–282

[48] Loday J.-L., Cyclic homology, Grundlehren der mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR

[49] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd ed., Springer-Verlag, New York, 1978 | DOI | MR

[50] Marcolli M., Ni X., “Rota–Baxter algebras, singular hypersurfaces, and renormalization on Kausz compactifications”, J. Singul., 15 (2016), 80–117, arXiv: 1408.3754 | DOI | MR

[51] May J.P., Ponto K., More concise algebraic topology. Localization, completion, and model categories, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012 | MR

[52] Moerdijk I., “On the Connes–Kreimer construction of Hopf algebras”, Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), Contemp. Math., 271, Amer. Math. Soc., Providence, RI, 2001, 311–321, arXiv: math-ph/9907010 | DOI | MR

[53] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR

[54] Munthe-Kaas H.Z., Wright W.M., “On the Hopf algebraic structure of Lie group integrators”, Found. Comput. Math., 8 (2008), 227–257, arXiv: math.AC/0603023 | DOI | MR

[55] Nichols W., Sweedler M., “Hopf algebras and combinatorics”, Umbral Calculus and Hopf Algebras (Norman, Okla., 1978), Contemp. Math., 6, Amer. Math. Soc., Providence, R.I., 1982, 49–84 | DOI | MR

[56] Quillen D.G., Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin – New York, 1967 | DOI | MR

[57] Rota G.-C., “On the foundations of combinatorial theory. I Theory of Möbius functions”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2 (1964), 340–368 | DOI | MR

[58] Schmitt W.R., “Antipodes and incidence coalgebras”, J. Combin. Theory Ser. A, 46 (1987), 264–290 | DOI | MR

[59] Taft E.J., Wilson R.L., “On antipodes in pointed Hopf algebras”, J. Algebra, 29 (1974), 27–32 | DOI | MR

[60] Takeuchi M., “Free Hopf algebras generated by coalgebras”, J. Math. Soc. Japan, 23 (1971), 561–582 | DOI | MR

[61] Willerton S., “The twisted Drinfeld double of a finite group via gerbes and finite groupoids”, Algebr. Geom. Topol., 8 (2008), 1419–1457, arXiv: math.QA/0503266 | DOI | MR