Mots-clés : antipodes
@article{SIGMA_2022_18_a52,
author = {Ralph M. Kaufmann and Yang Mo},
title = {Pathlike {Co/Bialgebras} and their {Antipodes} with {Applications} to {Bi-} and {Hopf} {Algebras} {Appearing} in {Topology,} {Number} {Theory} and {Physics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/}
}
TY - JOUR AU - Ralph M. Kaufmann AU - Yang Mo TI - Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/ LA - en ID - SIGMA_2022_18_a52 ER -
%0 Journal Article %A Ralph M. Kaufmann %A Yang Mo %T Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/ %G en %F SIGMA_2022_18_a52
Ralph M. Kaufmann; Yang Mo. Pathlike Co/Bialgebras and their Antipodes with Applications to Bi- and Hopf Algebras Appearing in Topology, Number Theory and Physics. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a52/
[1] Andruskiewitsch N., Ferrer Santos W., “The beginnings of the theory of Hopf algebras”, Acta Appl. Math., 108 (2009), 3–17 | DOI | MR
[2] Artin M., Noncommutaive rings, Course notes, 1999 http://www-math.mit.edu/ẽtingof/artinnotes.pdf
[3] Atkinson F.V., “Some aspects of Baxter's functional equation”, J. Math. Anal. Appl., 7 (1963), 1–30 | DOI | MR
[4] Baues H.J., “The double bar and cobar constructions”, Compositio Math., 43 (1981), 331–341 | MR
[5] Berger C., Kaufmann R.M., Trees, graphs and aggregates: a categorical perspective on combinatorial surface topology, geometry, and algebra, arXiv: 2201.10537
[6] Berger C., Kaufmann R.M., Derived decorated Feynman categories, in preparation
[7] Brown F., Motivic periods and the projective line minus three points, arXiv: 1407.5165
[8] Brown F., “Feynman amplitudes, coaction principle, and cosmic Galois group”, Commun. Number Theory Phys., 11 (2017), 453–556, arXiv: 1512.06409 | DOI | MR
[9] Butcher J.C., “An algebraic theory of integration methods”, Math. Comp., 26 (1972), 79–106 | DOI | MR
[10] Cartier P., “A primer of Hopf algebras”, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 537–615 | DOI | MR
[11] Chen C.Y., Nichols W.D., “A duality theorem for Hopf module algebras over Dedekind rings”, Comm. Algebra, 18 (1990), 3209–3221 | DOI | MR
[12] Chen K.-T., “Iterated integrals of differential forms and loop space homology”, Ann. of Math., 97 (1973), 217–246 | DOI | MR
[13] Connes A., Kreimer D., “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., 199 (1998), 203–242, arXiv: hep-th/9808042 | DOI | MR
[14] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. I The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210 (2000), 249–273, arXiv: hep-th/9912092 | DOI | MR
[15] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. II The $\beta$-function, diffeomorphisms and the renormalization group”, Comm. Math. Phys., 216 (2001), 215–241, arXiv: hep-th/0003188 | DOI | MR
[16] Dijkgraaf R., Pasquier V., Roche P., “Quasi Hopf algebras, group cohomology and orbifold models”, Nuclear Phys. B Proc. Suppl., 18 (1990), 60–72 | DOI | MR
[17] Duffaut Espinosa L.A., Ebrahimi-Fard K., Gray W.S., “A combinatorial Hopf algebra for nonlinear output feedback control systems”, J. Algebra, 453 (2016), 609–643, arXiv: 1406.5396 | DOI | MR
[18] Dür A., Möbius functions, incidence algebras and power series representations, Lecture Notes in Math., 1202, Springer-Verlag, Berlin, 1986 | DOI | MR
[19] Ebrahimi-Fard K., Guo L., Kreimer D., “Integrable renormalization. II The general case”, Ann. Henri Poincaré, 6 (2005), 369–395, arXiv: hep-th/0403118 | DOI | MR
[20] Ebrahimi-Fard K., Kreimer D., “The Hopf algebra approach to Feynman diagram calculations”, J. Phys. A: Math. Gen., 38 (2005), R385–R407, arXiv: hep-th/0510202 | DOI | MR
[21] Fiedorowicz Z., Loday J.-L., “Crossed simplicial groups and their associated homology”, Trans. Amer. Math. Soc., 326 (1991), 57–87 | DOI | MR
[22] Foissy L., “Les algèbres de Hopf des arbres enracinés décorés. II”, Bull. Sci. Math., 126 (2002), 249–288, arXiv: math.QA/0105212 | DOI | MR
[23] Foissy L., Cointeracting bialgebras, Talk at Algebraic Structures in Perturbative Quantum Field Theory, IHES, November 2020
[24] Gálvez-Carrillo I., Kaufmann R.M., Tonks A., “Three Hopf algebras from number theory, physics topology, and their common background I: operadic simplicial aspects”, Commun. Number Theory Phys., 14 (2020), 1–90, arXiv: 1607.00196 | DOI | MR
[25] Gálvez-Carrillo I., Kaufmann R.M., Tonks A., “Three Hopf algebras from number theory, physics topology, and their common background II: general categorical formulation”, Commun. Number Theory Phys., 14 (2020), 91–169, arXiv: 1607.00196 | DOI | MR
[26] Gelfand S.I., Manin Yu.I., Methods of homological algebra, Springer Monographs in Mathematics, 2nd ed.,, Springer-Verlag, Berlin, 2003 | DOI | MR
[27] Goncharov A.B., “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128 (2005), 209–284, arXiv: math.AG/0208144 | DOI | MR
[28] Guo L., An introduction to Rota–Baxter algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012 | MR
[29] Joni S.A., Rota G.-C., “Coalgebras and bialgebras in combinatorics”, Stud. Appl. Math., 61 (1979), 93–139 | DOI | MR
[30] Joyal A., On disks, dualities, and $\Theta$ categories, Preprint, 1997
[31] Joyal A., Street R., “Braided tensor categories”, Adv. Math., 102 (1993), 20–78 | DOI | MR
[32] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR
[33] Kaufmann R.M., “Orbifolding Frobenius algebras”, Internat. J. Math., 14 (2003), 573–617, arXiv: math.AG/0107163 | DOI | MR
[34] Kaufmann R.M., “On spineless cacti, Deligne's conjecture and Connes–Kreimer's Hopf algebra”, Topology, 46 (2007), 39–88 | DOI | MR
[35] Kaufmann R.M., “Lectures on Feynman categories”, 2016 MATRIX Annals, MATRIX Book Ser., 1, Springer, Cham, 2018, 375–438, arXiv: 1702.06843 | DOI | MR
[36] Kaufmann R.M., “Feynman categories and representation theory”, Representations of Algebras, Geometry and Physics, Contemp. Math., 769, Amer. Math. Soc., Providence, RI, 2021, 11–84, arXiv: 1911.10169 | DOI | MR
[37] Kaufmann R.M., B-plus operators in field theory, Feynman categories and Hopf algebras, in preparation | MR
[38] Kaufmann R.M., Manin Yu., Zagier D., “Higher Weil–Petersson volumes of moduli spaces of stable $n$-pointed curves”, Comm. Math. Phys., 181 (1996), 763–787, arXiv: alg-geom/9604001 | DOI | MR
[39] Kaufmann R.M., Medina-Mardones A.M., “Cochain level May–Steenrod operations”, Forum Math., 33 (2021), 1507–1526, arXiv: 2010.02571 | DOI | MR
[40] Kaufmann R.M., Pham D., “The Drinfel'd double and twisting in stringy orbifold theory”, Internat. J. Math., 20 (2009), 623–657, arXiv: 0708.4006 | DOI | MR
[41] Kaufmann R.M., Ward B.C., Feynman categories, Astérisque, 387, 2017, vii+161 pp., arXiv: 1312.1269 | MR
[42] Kaufmann R.M., Yang M., Higher categorical Hopf algebras, in preparation
[43] Kaufmann R.M., Zhang Y., “Permutohedral structures on $E_2$-operads”, Forum Math., 29 (2017), 1371–1411 | DOI | MR
[44] Kreimer D., “The core Hopf algebra”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 313–321, arXiv: 0902.1223 | DOI | MR
[45] Kreimer D., Cutkosky rules from outer space, arXiv: 1607.04861
[46] Kreimer D., Yeats K., Algebraic interplay between renormalization and monodromy, arXiv: 2105.05948
[47] Leroux P., “Les catégories de Möbius”, Cah. Topol. Géom. Différ., 16 (1975), 280–282
[48] Loday J.-L., Cyclic homology, Grundlehren der mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR
[49] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd ed., Springer-Verlag, New York, 1978 | DOI | MR
[50] Marcolli M., Ni X., “Rota–Baxter algebras, singular hypersurfaces, and renormalization on Kausz compactifications”, J. Singul., 15 (2016), 80–117, arXiv: 1408.3754 | DOI | MR
[51] May J.P., Ponto K., More concise algebraic topology. Localization, completion, and model categories, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2012 | MR
[52] Moerdijk I., “On the Connes–Kreimer construction of Hopf algebras”, Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), Contemp. Math., 271, Amer. Math. Soc., Providence, RI, 2001, 311–321, arXiv: math-ph/9907010 | DOI | MR
[53] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | DOI | MR
[54] Munthe-Kaas H.Z., Wright W.M., “On the Hopf algebraic structure of Lie group integrators”, Found. Comput. Math., 8 (2008), 227–257, arXiv: math.AC/0603023 | DOI | MR
[55] Nichols W., Sweedler M., “Hopf algebras and combinatorics”, Umbral Calculus and Hopf Algebras (Norman, Okla., 1978), Contemp. Math., 6, Amer. Math. Soc., Providence, R.I., 1982, 49–84 | DOI | MR
[56] Quillen D.G., Homotopical algebra, Lecture Notes in Math., 43, Springer-Verlag, Berlin – New York, 1967 | DOI | MR
[57] Rota G.-C., “On the foundations of combinatorial theory. I Theory of Möbius functions”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2 (1964), 340–368 | DOI | MR
[58] Schmitt W.R., “Antipodes and incidence coalgebras”, J. Combin. Theory Ser. A, 46 (1987), 264–290 | DOI | MR
[59] Taft E.J., Wilson R.L., “On antipodes in pointed Hopf algebras”, J. Algebra, 29 (1974), 27–32 | DOI | MR
[60] Takeuchi M., “Free Hopf algebras generated by coalgebras”, J. Math. Soc. Japan, 23 (1971), 561–582 | DOI | MR
[61] Willerton S., “The twisted Drinfeld double of a finite group via gerbes and finite groupoids”, Algebr. Geom. Topol., 8 (2008), 1419–1457, arXiv: math.QA/0503266 | DOI | MR