Maximal Discrete Subgroups in Unitary Groups of Operator Algebras
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that if a group $G$ is mixed-identity-free, then the projective unitary group of its group von Neumann algebra contains a maximal discrete subgroup containing $G$. The proofs are elementary and make use of free probability theory. In addition, we clarify the situation for $C^*$-algebras.
Keywords: maximal discrete subgroups, unitary groups, operator algebras.
@article{SIGMA_2022_18_a51,
     author = {Vadim Alekseev and Andreas Thom},
     title = {Maximal {Discrete} {Subgroups} in {Unitary} {Groups} of {Operator} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a51/}
}
TY  - JOUR
AU  - Vadim Alekseev
AU  - Andreas Thom
TI  - Maximal Discrete Subgroups in Unitary Groups of Operator Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a51/
LA  - en
ID  - SIGMA_2022_18_a51
ER  - 
%0 Journal Article
%A Vadim Alekseev
%A Andreas Thom
%T Maximal Discrete Subgroups in Unitary Groups of Operator Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a51/
%G en
%F SIGMA_2022_18_a51
Vadim Alekseev; Andreas Thom. Maximal Discrete Subgroups in Unitary Groups of Operator Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a51/

[1] Allan N.D., “Maximality of some arithmetic groups”, An. Acad. Brasil. Ci., 38 (1966), 223–227 | MR

[2] Belolipetsky M., Lubotzky A., “Finite groups and hyperbolic manifolds”, Invent. Math., 162 (2005), 459–472, arXiv: math.GR/0406607 | DOI | MR

[3] Connes A., “Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not=1$”, Ann. of Math., 104 (1976), 73–115 | DOI | MR

[4] Gutnik L.A., Pjateckiĭ-Šapiro I.I., “Maximal discrete subgroups of a unimodular group”, Trudy Moskov. Mat. Obšč, 15, 1966, 279–295 | MR

[5] Helling H., “Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe”, Math. Z., 92 (1966), 269–280 | DOI | MR

[6] Hull M., Osin D., “Transitivity degrees of countable groups and acylindrical hyperbolicity”, Israel J. Math., 216 (2016), 307–353, arXiv: 1501.04182 | DOI | MR

[7] Jacobson B., “A mixed identity-free elementary amenable group”, Comm. Algebra, 49 (2021), 235–241, arXiv: 1912.06685 | DOI | MR

[8] Kuranishi M., “On everywhere dense imbedding of free groups in Lie groups”, Nagoya Math. J., 2 (1951), 63–71 http://projecteuclid.org/euclid.nmj/1118764740 | DOI | MR

[9] Popa S., “Free-independent sequences in type ${\rm II}_1$ factors and related problems”, Astérisque, 232, 1995, 187–202 | MR

[10] Ramanathan K.G., “Discontinuous groups. II”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1964 (1964), 145–164 | MR

[11] Toyama H., “On discrete subgroups of a Lie group”, Kōdai Math. Sem. Rep., 1 (1949), 36–37 | DOI | MR

[12] Voiculescu D.V., Dykema K.J., Nica A., Free random variables, v. 1, CRM Monograph Series, Amer. Math. Soc., Providence, RI, 1992 | DOI | MR

[13] Wang S.P., “On subgroups with property $P$ and maximal discrete subgroups”, Amer. J. Math., 97 (1975), 404–414 | DOI | MR

[14] Zassenhaus H., “Beweis eines satzes über diskrete gruppen”, Abh. Math. Sem. Univ. Hamburg, 12 (1937), 289–312 | DOI | MR