Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an algebra $\mathcal{K}_n$ which has a structure of a left comodule over the quantum toroidal algebra of type $A_{n-1}$. Algebra $\mathcal{K}_n$ is a higher rank generalization of $\mathcal{K}_1$, which provides a uniform description of deformed $W$ algebras associated with Lie (super)algebras of types BCD. We show that $\mathcal{K}_n$ possesses a family of commutative subalgebras.
Keywords: quantum toroidal algebras, integrals of motion.
Mots-clés : comodule
@article{SIGMA_2022_18_a50,
     author = {Boris Feigin and Michio Jimbo and Evgeny Mukhin},
     title = {Quantum {Toroidal} {Comodule} {Algebra} of {Type} $A_{n-1}$ and {Integrals} of {Motion}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a50/}
}
TY  - JOUR
AU  - Boris Feigin
AU  - Michio Jimbo
AU  - Evgeny Mukhin
TI  - Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a50/
LA  - en
ID  - SIGMA_2022_18_a50
ER  - 
%0 Journal Article
%A Boris Feigin
%A Michio Jimbo
%A Evgeny Mukhin
%T Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a50/
%G en
%F SIGMA_2022_18_a50
Boris Feigin; Michio Jimbo; Evgeny Mukhin. Quantum Toroidal Comodule Algebra of Type $A_{n-1}$ and Integrals of Motion. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a50/

[1] Aganagic M., Okounkov A., “Quasimap counts and Bethe eigenfunctions”, Mosc. Math. J., 17 (2017), 565–600, arXiv: 1704.08746 | DOI | MR

[2] Feigin B., Frenkel E., “Integrals of motion and quantum groups”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 349–418, arXiv: hep-th/9310022 | DOI | MR

[3] Feigin B., Jimbo M., Miwa T., Mukhin E., “Branching rules for quantum toroidal $\mathfrak{gl}_n$”, Adv. Math., 300 (2016), 229–274, arXiv: 1309.2147 | DOI | MR

[4] Feigin B., Jimbo M., Miwa T., Mukhin E., “Finite type modules and Bethe ansatz for quantum toroidal $\mathfrak{gl}_1$”, Comm. Math. Phys., 356 (2017), 285–327, arXiv: 1603.02765 | DOI | MR

[5] Feigin B., Jimbo M., Mukhin E., “Integrals of motion from quantum toroidal algebras”, J. Phys. A: Math. Theor., 50 (2017), 464001, 28 pp., arXiv: 1705.07984 | DOI | MR

[6] Feigin B., Jimbo M., Mukhin E., “The $(\mathfrak{gl}_m,\mathfrak{gl}_n)$ duality in the quantum toroidal setting”, Comm. Math. Phys., 367 (2019), 455–481, arXiv: 1801.08433 | DOI | MR

[7] Feigin B., Jimbo M., Mukhin E., Vilkoviskiy I., “Deformations of $\mathcal{W}$ algebras via quantum toroidal algebras”, Selecta Math. (N.S.), 27 (2021), 52, 62 pp., arXiv: 2003.04234 | DOI | MR

[8] Feigin B., Kojima T., Shiraishi J., Watanabe H., The integrals of motion for the deformed $\mathcal{W}$-algebra $W_{q,t}(\widehat{\mathfrak{sl}}_N)$, arXiv: 0705.0627

[9] Fukuda M., Ohkubo Y., Shiraishi J., “Generalized Macdonald functions on Fock tensor spaces and duality formula for changing preferred direction”, Comm. Math. Phys., 380 (2020), 1–70, arXiv: 1903.05905 | DOI | MR

[10] Fukuda M., Ohkubo Y., Shiraishi J., “Non-stationary Ruijsenaars functions for $\kappa=t^{-1/N}$ and intertwining operators of Ding–Iohara–Miki algebra”, SIGMA, 16 (2020), 116, 55 pp., arXiv: 2002.00243 | DOI | MR

[11] Garbali A., de Gier J., “The $R$-matrix of the quantum toroidal algebra $U_{q,t}(\ddot {\mathfrak{gl}}_1)$ in the Fock module”, Comm. Math. Phys., 384 (2021), 1971–2008, arXiv: 2004.09241 | DOI | MR

[12] Kojima T., Shiraishi J., “The integrals of motion for the deformed $W$-algebra $W_{q,t}(\widehat{\mathfrak{gl}_N})$ II Proof of the commutation relations”, Comm. Math. Phys., 283 (2008), 795–851, arXiv: 0709.2305 | DOI | MR

[13] Kolb S., “Quantum symmetric Kac–Moody pairs”, Adv. Math., 267 (2014), 395–469, arXiv: 1207.6036 | DOI | MR

[14] Koroteev P., Zeitlin A.M., “Toroidal $q$-opers”, J. Inst. Math. Jussieu (to appear) | DOI

[15] Litvinov A., Vilkoviskiy I., “Liouville reflection operator, affine Yangian and Bethe ansatz”, J. High Energy Phys., 2020:12 (2020), 100, 48 pp., arXiv: 2007.00535 | DOI | MR

[16] Litvinov A., Vilkoviskiy I., “Integrable structure of BCD conformal field theory and boundary Bethe ansatz for affine Yangian”, J. High Energy Phys., 2021:8 (2021), 141, 28 pp., arXiv: 2105.04018 | DOI | MR

[17] Lu M., Wang W., “A Drinfeld type presentation of affine $\imath$quantum groups I: Split ADE type”, Adv. Math., 393 (2021), 108111, 46 pp., arXiv: 2009.04542 | DOI | MR

[18] Molev A.I., Ragoucy E., Sorba P., “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15 (2003), 789–822, arXiv: math.QA/0208140 | DOI | MR

[19] Ruijsenaars S.N.M., “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Comm. Math. Phys., 110 (1987), 191–213 | DOI | MR

[20] Saito Y., “Quantum toroidal algebras and their vertex representations”, Publ. Res. Inst. Math. Sci., 34 (1998), 155–177, arXiv: q-alg/9611030 | DOI | MR

[21] Sklyanin E.K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR