On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We will give an explicit construction of the invariant Hermitian form for the monodromy of an $A$-hypergeometric system given that there is a Mellin–Barnes basis of solutions.
Keywords: $A$-hypergeometric functions, invariant Hermitian form.
Mots-clés : monodromy
@article{SIGMA_2022_18_a47,
     author = {Carlo Verschoor},
     title = {On the {Monodromy} {Invariant} {Hermitian} {Form} for $A${-Hypergeometric} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a47/}
}
TY  - JOUR
AU  - Carlo Verschoor
TI  - On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a47/
LA  - en
ID  - SIGMA_2022_18_a47
ER  - 
%0 Journal Article
%A Carlo Verschoor
%T On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a47/
%G en
%F SIGMA_2022_18_a47
Carlo Verschoor. On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a47/

[1] Adolphson A., “Hypergeometric functions and rings generated by monomials”, Duke Math. J., 73 (1994), 269–290, arXiv: math.AG/9910009 | DOI | MR

[2] Appell P., “Mémoire sur les équations différentielles linéaires”, Ann. Sci. École Norm. Sup. (2), 10 (1881), 391–424 | DOI | MR

[3] Appell P., “Sur les fonctions hypergéométriques de deux variables”, J. Math. Pures Appl., 8 (1882), 173–216

[4] Beukers F., “Algebraic $A$-hypergeometric functions”, Invent. Math., 180 (2010), 589–610, arXiv: 0812.1134 | DOI | MR

[5] Beukers F., “Notes on $A$-hypergeometric functions”, Arithmetic and Galois theories of differential equations, Sémin. Congr., 23, Soc. Math. France, Paris, 2011, 25–61 | MR

[6] Beukers F., “Monodromy of $A$-hypergeometric functions”, J. Reine Angew. Math., 718 (2016), 183–206, arXiv: 1101.0493 | DOI | MR

[7] Beukers F., Heckman G., “Monodromy for the hypergeometric function $_nF_{n-1}$”, Invent. Math., 95 (1989), 325–354 | DOI | MR

[8] Cattani E., Dickenstein A., Sturmfels B., “Binomial residues”, Ann. Inst. Fourier (Grenoble), 52 (2002), 687–708, arXiv: math.AG/0003178 | DOI | MR

[9] De Loera J.A., Rambau J., Santos F., Triangulations. Structures for algorithms and applications, Algorithms and Computation in Mathematics, 25, Springer-Verlag, Berlin, 2010 | DOI | MR

[10] Gelfand I.M., Graev M.I., Zelevinsky A.V., “Holonomic systems of equations and series of hypergeometric type”, Dokl. Akad. Nauk SSSR, 295 (1987), 14–19 | MR

[11] Gelfand I.M., Kapranov M.M., Zelevinsky A.V., “Generalized Euler integrals and $A$-hypergeometric functions”, Adv. Math., 84 (1990), 255–271 | DOI | MR

[12] Gelfand I.M., Zelevinsky A.V., Kapranov M.M., “Equations of hypergeometric type and Newton polyhedra”, Dokl. Akad. Nauk SSSR, 300 (1988), 529–534 | MR

[13] Gelfand I.M., Zelevinsky A.V., Kapranov M.M., “Hypergeometric functions and toral manifolds”, Funct. Anal. Appl., 23 (1989), 94–106 | DOI | MR

[14] Goto Y., Matsubara-Heo S.-J., On the signature of monodromy invariant Hermitian form, unpublished, 2020

[15] Goto Y., Matsubara-Heo S.-J., “Homology and cohomology intersection numbers of GKZ systems”, Indag. Math. (N.S.), 33 (2022), 546–580, arXiv: 2006.07848 | DOI | MR

[16] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | MR

[17] Horn J., “Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34 (1889), 544–600 | DOI | MR

[18] Horn J., “Hypergeometrische Funktionen zweier Veränderlichen”, Math. Ann., 105 (1931), 381–407 | DOI | MR

[19] Kita M., Yoshida M., “Intersection theory for twisted cycles”, Math. Nachr., 166 (1994), 287–304 | DOI | MR

[20] Lauricella G., “Sulle funzioni ipergeometriche a piu variabili”, Rend. Circ. Mat. Palermo, 7 (1893), 111–158 | DOI