Determinantal Formulas for Exceptional Orthogonal Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present determinantal formulas for families of exceptional $X_m$-Laguerre and exceptional $X_m$-Jacobi polynomials and also for exceptional $X_2$-Hermite polynomials. The formulas resemble Vandermonde determinants and use the zeros of the classical orthogonal polynomials.
Keywords: determinantal formulas.
Mots-clés : exceptional orthogonal polynomials
@article{SIGMA_2022_18_a46,
     author = {Brian Simanek},
     title = {Determinantal {Formulas} for {Exceptional} {Orthogonal} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a46/}
}
TY  - JOUR
AU  - Brian Simanek
TI  - Determinantal Formulas for Exceptional Orthogonal Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a46/
LA  - en
ID  - SIGMA_2022_18_a46
ER  - 
%0 Journal Article
%A Brian Simanek
%T Determinantal Formulas for Exceptional Orthogonal Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a46/
%G en
%F SIGMA_2022_18_a46
Brian Simanek. Determinantal Formulas for Exceptional Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a46/

[1] Bonneux N., “Exceptional Jacobi polynomials”, J. Approx. Theory, 239 (2019), 72–112, arXiv: 1804.01323 | DOI | MR

[2] Bonneux N., Kuijlaars A.B.J., “Exceptional Laguerre polynomials”, Stud. Appl. Math., 141 (2018), 547–595, arXiv: 1708.03106 | DOI | MR

[3] Durán A.J., “Exceptional Charlier and Hermite orthogonal polynomials”, J. Approx. Theory, 182 (2014), 29–58, arXiv: 1309.1175 | DOI | MR

[4] Durán A.J., “Exceptional Meixner and Laguerre orthogonal polynomials”, J. Approx. Theory, 184 (2014), 176–208, arXiv: 1310.4658 | DOI | MR

[5] Durán A.J., “Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials”, Integral Transforms Spec. Funct., 26 (2015), 357–376, arXiv: 1409.4697 | DOI | MR

[6] Durán A.J., “Exceptional Hahn and Jacobi orthogonal polynomials”, J. Approx. Theory, 214 (2017), 9–48, arXiv: 1510.02579 | DOI | MR

[7] Durán A.J., “Corrigendum to the papers on Exceptional orthogonal polynomials: J. Approx. Theory 182 (2014) 29–58, 184 (2014), 176–208 and 214 (2017), 9–48”, J. Approx. Theory, 253 (2020), 105349, 5 pp. | DOI | MR

[8] Durán A.J., “The algebra of recurrence relations for exceptional Laguerre and Jacobi polynomials”, Proc. Amer. Math. Soc., 149 (2021), 173–188 | DOI | MR

[9] Durán A.J., “Christoffel transform of classical discrete measures and invariance of determinants of classical and classical discrete polynomials”, J. Math. Anal. Appl., 503 (2021), 125306, 29 pp. | DOI | MR

[10] Durán A.J., Pérez M., “Admissibility condition for exceptional Laguerre polynomials”, J. Math. Anal. Appl., 424 (2015), 1042–1053, arXiv: 1409.4901 | DOI | MR

[11] Felder G., Hemery A.D., Veselov A.P., “Zeros of Wronskians of Hermite polynomials and Young diagrams”, Phys. D, 241 (2012), 2131–2137, arXiv: 1005.2695 | DOI | MR

[12] García-Ferrero M.A., Gómez-Ullate D., Milson R., “A Bochner type characterization theorem for exceptional orthogonal polynomials”, J. Math. Anal. Appl., 472 (2019), 584–626, arXiv: 1603.04358 | DOI | MR

[13] García-Ferrero M.A., Gómez-Ullate D., Milson R., “Exceptional Legendre polynomials and confluent Darboux transformations”, SIGMA, 17 (2021), 016, 19 pp., arXiv: 2008.02822 | DOI | MR

[14] Gómez-Ullate D., Grandati Y., Milson R., “Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials”, J. Phys. A: Math. Theor., 47 (2014), 015203, 27 pp., arXiv: 1306.5143 | DOI | MR

[15] Gómez-Ullate D., Grandati Y., Milson R., “Corrigendum on the proof of completeness for exceptional Hermite polynomials”, J. Approx. Theory, 253 (2020), 105350, 10 pp., arXiv: 1911.10602 | DOI | MR

[16] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0807.3939 | DOI | MR

[17] Gómez-Ullate D., Kasman A., Kuijlaars A.B.J., Milson R., “Recurrence relations for exceptional Hermite polynomials”, J. Approx. Theory, 204 (2016), 1–16, arXiv: 1506.03651 | DOI | MR

[18] Gómez-Ullate D., Marcellán F., Milson R., “Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials”, J. Math. Anal. Appl., 399 (2013), 480–495, arXiv: 1204.2282 | DOI | MR

[19] Ho C.L., Odake S., Sasaki R., “Properties of the exceptional $(X_\ell)$ Laguerre and Jacobi polynomials”, SIGMA, 7 (2011), 107, 24 pp., arXiv: 0912.5447 | DOI | MR

[20] Kelly J.S., Liaw C., Osborn J., “Moment representations of exceptional $X_1$ orthogonal polynomials”, J. Math. Anal. Appl., 455 (2017), 1848–1869, arXiv: 1610.06531 | DOI | MR

[21] Kelly J.S., Liaw C., Osborn J., “Moment representations of Type I $X_2$ exceptional Laguerre polynomials”, Adv. Dyn. Syst. Appl., 14 (2019), 49–65, arXiv: 1705.07851 | MR

[22] Kuijlaars A.B.J., McLaughlin K.T.R., “Riemann–Hilbert analysis for Laguerre polynomials with large negative parameter”, Comput. Methods Funct. Theory, 1 (2001), 205–233, arXiv: math.CA/0204248 | DOI | MR

[23] Kuijlaars A.B.J., Milson R., “Zeros of exceptional Hermite polynomials”, J. Approx. Theory, 200 (2015), 28–39, arXiv: 1412.6364 | DOI | MR

[24] Liaw C., Littlejohn L., Kelly J.S., “Spectral analysis for the exceptional $X_m$-Jacobi equation”, Electron. J. Differential Equations, 2015 (2015), 194, 10 pp., arXiv: 1501.04698 | MR

[25] Liaw C., Littlejohn L.L., Milson R., Stewart J., “The spectral analysis of three families of exceptional Laguerre polynomials”, J. Approx. Theory, 202 (2016), 5–41, arXiv: 1407.4145 | DOI | MR

[26] Liaw C., Osborn J., “Moment representations of the exceptional $X_1$-Laguerre orthogonal polynomials”, Math. Nachr., 290 (2017), 1716–1731, arXiv: 1506.07580 | DOI | MR

[27] Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A. (Editors), NIST Digital Library of Mathematical Functions, Release 1.1.5 of 2022-03-15 https://dlmf.nist.gov/

[28] Quesne C., “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics”, SIGMA, 5 (2009), 084, 24 pp., arXiv: 0906.2331 | DOI | MR

[29] Simanek B., “Convergence rates of exceptional zeros of exceptional orthogonal polynomials”, Comput. Methods Funct. Theory (to appear)

[30] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR