Tropical Mirror Symmetry in Dimension One
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a tropical mirror symmetry theorem for descendant Gromov–Witten invariants of the elliptic curve, generalizing the tropical mirror symmetry theorem for Hurwitz numbers of the elliptic curve, Theorem 2.20 in [Böhm J., Bringmann K., Buchholz A., Markwig H., J. Reine Angew. Math. 732 (2017), 211–246, arXiv:1309.5893]. For the case of the elliptic curve, the tropical version of mirror symmetry holds on a fine level and easily implies the equality of the generating series of descendant Gromov–Witten invariants of the elliptic curve to Feynman integrals. To prove tropical mirror symmetry for elliptic curves, we investigate the bijection between graph covers and sets of monomials contributing to a coefficient in a Feynman integral. We also soup up the traditional approach in mathematical physics to mirror symmetry for the elliptic curve, involving operators on a Fock space, to give a proof of tropical mirror symmetry for Hurwitz numbers of the elliptic curve. In this way, we shed light on the intimate relation between the operator approach on a bosonic Fock space and the tropical approach.
Keywords: mirror symmetry, elliptic curves, Feynman integral, tropical geometry, Hurwitz numbers, quasimodular forms, Fock space.
@article{SIGMA_2022_18_a45,
     author = {Janko B\"ohm and Christoph Goldner and Hannah Markwig},
     title = {Tropical {Mirror} {Symmetry} in {Dimension} {One}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a45/}
}
TY  - JOUR
AU  - Janko Böhm
AU  - Christoph Goldner
AU  - Hannah Markwig
TI  - Tropical Mirror Symmetry in Dimension One
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a45/
LA  - en
ID  - SIGMA_2022_18_a45
ER  - 
%0 Journal Article
%A Janko Böhm
%A Christoph Goldner
%A Hannah Markwig
%T Tropical Mirror Symmetry in Dimension One
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a45/
%G en
%F SIGMA_2022_18_a45
Janko Böhm; Christoph Goldner; Hannah Markwig. Tropical Mirror Symmetry in Dimension One. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a45/

[1] Amini O., Baker M., Brugallé E., Rabinoff J., “Lifting harmonic morphisms I: metrized complexes and {B}erkovich skeleta”, Res. Math. Sci., 2 (2015), 7, 67 pp., arXiv: 1303.4812 | DOI | MR

[2] Ardila F., Brugallé E., “The double Gromov–Witten invariants of Hirzebruch surfaces are piecewise polynomial”, Int. Math. Res. Not., 2017 (2017), 614–641, arXiv: 1412.4563 | DOI | MR

[3] Behrend K., “Gromov–Witten invariants in algebraic geometry”, Invent. Math., 127 (1997), 601–617, arXiv: alg-geom/9601011 | DOI | MR

[4] Behrend K., Fantechi B., “The intrinsic normal cone”, Invent. Math., 128 (1997), 45–88, arXiv: alg-geom/9601010 | DOI | MR

[5] Bertrand B., Brugallé E., Mikhalkin G., “Tropical open Hurwitz numbers”, Rend. Semin. Mat. Univ. Padova, 125 (2011), 157–171, arXiv: 1005.4628 | DOI | MR

[6] Block F., Göttsche L., “Fock spaces and refined Severi degrees”, Int. Math. Res. Not., 2016 (2016), 6553–6580, arXiv: 1409.4868 | DOI | MR

[7] Blomme T., Floor diagrams and enumerative invariants of line bundles over an elliptic curve, arXiv: 2112.05439

[8] Blomme T., Tropical curves in abelian surfaces I: enumeration of curves passing through points, arXiv: 2202.07250

[9] Böhm J., Bringmann K., Buchholz A., Markwig H., “Tropical mirror symmetry for elliptic curves”, J. Reine Angew. Math., 732 (2017), 211–246, arXiv: 1309.5893 | DOI | MR

[10] Brugallé E., Mikhalkin G., “Floor decompositions of tropical curves: the planar case”, Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT) (Gökova, 2009), 64–90, arXiv: 0812.3354 | MR

[11] Cavalieri R., Gross A., Markwig H., Tropical psi-classes, arXiv: 2009.00586

[12] Cavalieri R., Johnson P., Markwig H., “Tropical Hurwitz numbers”, J. Algebraic Combin., 32 (2010), 241–265, arXiv: 0804.0579 | DOI | MR

[13] Cavalieri R., Johnson P., Markwig H., Ranganathan D., “A graphical interface for the Gromov–Witten theory of curves”, Algebraic Geometry (Salt Lake City 2015), Proc. Sympos. Pure Math., 97, Amer. Math. Soc., Providence, RI, 2018, 139–167, arXiv: 1604.07250 | DOI | MR

[14] Cavalieri R., Johnson P., Markwig H., Ranganathan D., “Counting curves on Hirzebruch surfaces: tropical geometry and the Fock space”, Math. Proc. Cambridge Philos. Soc., 171 (2021), 165–205, arXiv: 1706.05401 | DOI | MR

[15] Dijkgraaf R., “Mirror symmetry and elliptic curves”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 149–163 | DOI | MR

[16] Eskin A., Okounkov A., “Pillowcases and quasimodular forms”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 1–25, arXiv: math.DS/0505545 | DOI | MR

[17] Eskin A., Okounkov A., Pandharipande R., “The theta characteristic of a branched covering”, Adv. Math., 217 (2008), 873–888, arXiv: math.AG/0312186 | DOI | MR

[18] Fomin S., Mikhalkin G., “Labeled floor diagrams for plane curves”, J. Eur. Math. Soc. (JEMS), 12 (2010), 1453–1496, arXiv: 0906.3828 | DOI | MR

[19] Goujard E., Möller M., “Counting Feynman-like graphs: quasimodularity and Siegel–Veech weight”, J. Eur. Math. Soc. (JEMS), 22 (2020), 365–412, arXiv: 1609.01658 | DOI | MR

[20] Gross M., “Mirror symmetry for $\mathbb P^2$ and tropical geometry”, Adv. Math., 224 (2010), 169–245, arXiv: 0903.1378 | DOI | MR

[21] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data. I”, J. Differential Geom., 72 (2006), 169–338 , arXiv: http://projecteuclid.org/euclid.jdg/1143593211math.AG/0309070 | DOI

[22] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data, II”, J. Algebraic Geom., 19 (2010), 679–780, arXiv: 0709.2290 | DOI | MR

[23] Kac V.G., Raina A.K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 29, 2nd ed., World Sci. Publ. Co., Inc., Teaneck, NJ, 2013 | DOI | MR

[24] Kaneko M., Zagier D., “A generalized Jacobi theta function and quasimodular forms”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 165–172 | DOI | MR

[25] Kerber M., Markwig H., “Counting tropical elliptic plane curves with fixed $j$-invariant”, Comment. Math. Helv., 84 (2009), 387–427, arXiv: math.AG/0608472 | DOI | MR

[26] Li S., Calabi–Yau geometry and higher genus mirror symmetry, Ph.D. Thesis, Harvard University, 2011 | MR

[27] Li S., BCOV theory on the elliptic curve and higher genus mirror symmetry, arXiv: 1112.4063

[28] Li S., Vertex algebras and quantum master equation, arXiv: 1612.01292

[29] Mandel T., Ruddat H., “Descendant log Gromov–Witten invariants for toric varieties and tropical curves”, Trans. Amer. Math. Soc., 373 (2020), 1109–1152, arXiv: 1612.02402 | DOI | MR

[30] Markwig H., Rau J., “Tropical descendant Gromov–Witten invariants”, Manuscripta Math., 129 (2009), 293–335, arXiv: 0809.1102 | DOI | MR

[31] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb{R}^2$”, J. Amer. Math. Soc., 18 (2005), 313–377, arXiv: math.AG/0312530 | DOI | MR

[32] Mikhalkin G., “Moduli spaces of rational tropical curves”, Proceedings of Gökova Geometry-Topology Conference 2006, Gökova Geometry/Topology Conference (GGT) (Gökova, 2007), 39–51, arXiv: 0704.0839 | MR

[33] Nishinou T., Siebert B., “Toric degenerations of toric varieties and tropical curves”, Duke Math. J., 135 (2006), 1–51, arXiv: math.AG/0409060 | DOI | MR

[34] Oberdieck G., Pixton A., “Holomorphic anomaly equations and the Igusa cusp form conjecture”, Invent. Math., 213 (2018), 507–587, arXiv: 1706.10100 | DOI | MR

[35] Oberdieck G., Pixton A., “Gromov–Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations”, Geom. Topol., 23 (2019), 1415–1489, arXiv: 1709.01481 | DOI | MR

[36] Okounkov A., Pandharipande R., “Gromov–Witten theory, Hurwitz theory, and completed cycles”, Ann. of Math., 163 (2006), 517–560, arXiv: math.AG/0204305 | DOI | MR

[37] Overholser P., Descendent tropical mirror symmetry for $\mathbb{P}^2$, arXiv: 1504.06138

[38] Shadrin S., Spitz L., Zvonkine D., “On double Hurwitz numbers with completed cycles”, J. Lond. Math. Soc., 86 (2012), 407–432, arXiv: 1103.3120 | DOI | MR

[39] Strominger A., Yau S.T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259, arXiv: hep-th/9606040 | DOI | MR

[40] Vakil R., “The moduli space of curves and Gromov–Witten theory”, Enumerative invariants in algebraic geometry and string theory, Lecture Notes in Math., 1947, Springer, Berlin, 2008, 143–198, arXiv: math.AG/0602347 | DOI | MR

[41] Wick G.C., “The evaluation of the collision matrix”, Phys. Rev., 80 (1950), 268–272 | DOI | MR