@article{SIGMA_2022_18_a44,
author = {Giulia Albonico and Yvonne Geyer and Lionel Mason},
title = {From {Twistor-Particle} {Models} to {Massive} {Amplitudes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a44/}
}
TY - JOUR AU - Giulia Albonico AU - Yvonne Geyer AU - Lionel Mason TI - From Twistor-Particle Models to Massive Amplitudes JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a44/ LA - en ID - SIGMA_2022_18_a44 ER -
Giulia Albonico; Yvonne Geyer; Lionel Mason. From Twistor-Particle Models to Massive Amplitudes. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a44/
[1] Albonico G., Geyer Y., Mason L., “Recursion and worldsheet formulae for 6d superamplitudes”, J. High Energy Phys., 2020:8 (2020), 066, 90 pp., arXiv: 2001.05928 | DOI | MR
[2] Albonico G., Geyer Y., Mason L., Massive ambitwistor string models, Parts I II, in preparation
[3] Arkani-Hamed N., Huang T.C., Huang Y., “Scattering amplitudes for all masses and spins”, J. High Energy Phys., 2021:11 (2021), 070, 75 pp., arXiv: 1709.04891 | DOI | MR
[4] Berkovits N., “Alternative string theory in twistor space for $N=4$ super-Yang–Mills theory”, Phys. Rev. Lett., 93 (2004), 011601, 3 pp., arXiv: hep-th/0402045 | DOI | MR
[5] Berkovits N., Lize M., “Field theory actions for ambitwistor string and superstring”, J. High Energy Phys., 2018:9 (2018), 097, 16 pp., arXiv: 1807.07661 | DOI | MR
[6] Bern Z., Carrasco J.J.M., Johansson H., “New relations for gauge-theory amplitudes”, Phys. Rev. D, 78 (2008), 085011, 19 pp., arXiv: 0805.3993 | DOI | MR
[7] Bern Z., Carrasco J.J.M., Johansson H., “Perturbative quantum gravity as a double copy of gauge theory”, Phys. Rev. Lett., 105 (2010), 061602, 4 pp., arXiv: 1004.0476 | DOI | MR
[8] Bette A., de Azcárraga J.A., Lukierski J., Miquel-Espanya C., “Massive relativistic free fields with Lorentz spins and electric charges”, Phys. Lett. B, 595 (2004), 491–497, arXiv: hep-th/0405166 | DOI | MR
[9] Bette A., Lukierski J., Miquel-Espanya C., “Two-twistor space, commuting composite Minkowski coordinates and particle dynamics”, Fundamental Interactions and Twistor-Like Methods, AIP Conf. Proc., 767, Amer. Inst. Phys., Melville, NY, 2005, 44–56, arXiv: hep-th/0503134 | DOI | MR
[10] Bjerrum-Bohr N.E.J., Bourjaily J.L., Damgaard P.H., Feng B., “Manifesting color-kinematics duality in the scattering equation formalism”, J. High Energy Phys., 2016:9 (2016), 094, 17 pp., arXiv: 1608.00006 | DOI | MR
[11] Cachazo F., Guevara A., Heydeman M., Mizera S., Schwarz J.H., Wen C., “The S matrix of 6D super Yang–Mills and maximal supergravity from rational maps”, J. High Energy Phys., 2018:9 (2018), 125, 85 pp., arXiv: 1805.11111 | DOI | MR
[12] Cachazo F., He S., Yuan E.Y., “Scattering in three dimensions from rational maps”, J. High Energy Phys., 2013:10 (2013), 141, 20 pp., arXiv: 1306.2962 | DOI | MR
[13] Cachazo F., He S., Yuan E.Y., “Scattering of massless particles in arbitrary dimensions”, Phys. Rev. Lett., 113 (2014), 171601, 4 pp., arXiv: 1307.2199 | DOI
[14] Cachazo F., He S., Yuan E.Y., “Scattering of massless particles: scalars, gluons and gravitons”, J. High Energy Phys., 2014:7 (2014), 033, 20 pp., arXiv: 1309.0885 | DOI
[15] Cachazo F., He S., Yuan E.Y., “Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM”, J. High Energy Phys., 2015:7 (2015), 149, 43 pp., arXiv: 1412.3479 | DOI | MR
[16] Cachazo F., Mason L., Skinner D., “Gravity in twistor space and its Grassmannian formulation”, SIGMA, 10 (2014), 051, 28 pp., arXiv: 1207.4712 | DOI | MR
[17] Cachazo F., Skinner D., “Gravity from rational curves in twistor space”, Phys. Rev. Lett., 110 (2013), 161301, 4 pp., arXiv: 1207.0741 | DOI
[18] Casali E., Geyer Y., Mason L., Monteiro R., Roehrig K.A., “New ambitwistor string theories”, J. High Energy Phys., 2015:11 (2015), 038, 29 pp., arXiv: 1506.08771 | DOI | MR
[19] Conde E., Joung E., Mkrtchyan K., “Spinor-helicity three-point amplitudes from local cubic interactions”, J. High Energy Phys., 2016:8 (2016), 040, 29 pp., arXiv: 1605.07402 | DOI | MR
[20] Conde E., Marzolla A., “Lorentz constraints on massive three-point amplitudes”, J. High Energy Phys., 2016:9 (2016), 041, 42 pp., arXiv: 1601.08113 | DOI | MR
[21] Craig N., Elvang H., Kiermaier M., Slatyer T.R., “Massive amplitudes on the Coulomb branch of $\mathcal N=4$ SYM”, J. High Energy Phys., 2011:12 (2011), 097, 38 pp., arXiv: 1104.2050 | DOI | MR
[22] de Azcarraga J.A., Fedoruk S., Izquierdo J.M., Lukierski J., “Two-twistor particle models and free massive higher spin fields”, J. High Energy Phys., 2015:4 (2015), 010, 39 pp., arXiv: 1409.7169 | DOI
[23] Deguchi S., Okano S., “Gauged twistor formulation of a massive spinning particle in four dimensions”, Phys. Rev. D, 93 (2016), 045016, 22 pp. | DOI | MR
[24] Deguchi S., Suzuki T., “Twistor formulation of a massive particle with rigidity”, Nuclear Phys. B, 932 (2018), 385–424, arXiv: 1707.04713 | DOI | MR
[25] Dolan L., Goddard P., “Proof of the formula of Cachazo, He and Yuan for Yang–Mills tree amplitudes in arbitrary dimension”, J. High Energy Phys., 2014:4 (2014), 010, 24 pp., arXiv: 1311.5200 | DOI | MR
[26] Fedoruk S., Lukierski J., “Massive twistor particle with spin generated by Souriau–Wess–Zumino term and its quantization”, Phys. Lett. B, 733 (2014), 309–315, arXiv: 1403.4127 | DOI
[27] Fedoruk S., Zima V.G., Bitwistor formulation of massive spinning particle, arXiv: hep-th/0308154
[28] Ferber A., “Supertwistors and conformal supersymmetry”, Nuclear Phys. B, 132 (1978), 55–64 | DOI | MR
[29] Geyer Y., Lipstein A.E., Mason L., “Ambitwistor strings in four dimensions”, Phys. Rev. Lett., 113 (2014), 081602, 5 pp., arXiv: 1404.6219 | DOI
[30] Geyer Y., Mason L., “Polarized scattering equations for 6D superamplitudes”, Phys. Rev. Lett., 122 (2019), 101601, 6 pp., arXiv: 1812.05548 | DOI
[31] Geyer Y., Mason L., “Supersymmetric S-matrices from the worldsheet in 10 11d”, Phys. Lett. B, 804 (2020), 135361, 6 pp., arXiv: 1901.00134 | DOI | MR
[32] Geyer Y., Mason L., Monteiro R., Tourkine P., “Loop integrands for scattering amplitudes from the Riemann sphere”, Phys. Rev. Lett., 115 (2015), 121603, 5 pp., arXiv: 1507.00321 | DOI | MR
[33] Geyer Y., Mason L., Monteiro R., Tourkine P., “One-loop amplitudes on the Riemann sphere”, J. High Energy Phys., 2016:3 (2016), 114, 53 pp., arXiv: 1511.06315 | DOI
[34] Geyer Y., Mason L., Skinner D., “Ambitwistor strings in six and five dimensions”, J. High Energy Phys., 2021:8 (2021), 153, 34 pp., arXiv: 2012.15172 | DOI | MR
[35] Herderschee A., Koren S., Trott T., “Constructing $\mathcal N=4$ Coulomb branch superamplitudes”, J. High Energy Phys., 2019:8 (2019), 107, 50 pp., arXiv: 1902.07205 | DOI | MR
[36] Hughston L.P., Twistors and particles, Lecture Notes in Physics, 97, Springer-Verlag, Berlin – New York, 1979 | DOI | MR
[37] Hughston L.P., Hurd T.R., “A cohomological description of massive fields”, Proc. Roy. Soc. London Ser. A, 378 (1981), 141–154 | DOI | MR
[38] Johansson H., Ochirov A., “Pure gravities via color-kinematics duality for fundamental matter”, J. High Energy Phys., 2015:11 (2015), 046, 52 pp., arXiv: 1407.4772 | DOI | MR
[39] Johansson H., Ochirov A., “Double copy for massive quantum particles with spin”, J. High Energy Phys., 2019:9 (2019), 040, 44 pp., arXiv: 1906.12292 | DOI | MR
[40] Kunz C., Four dimensional anomaly-free twistor string, arXiv: 2004.04842
[41] Kunz C., A note on classical aspects of the four dimensional anomaly-free twistor string, arXiv: 2104.06584
[42] Lazopoulos A., Ochirov A., Shi C., “All-multiplicity amplitudes with four massive quarks and identical-helicity gluons”, J. High Energy Phys., 2022:3 (2022), 009, 38 pp., arXiv: 2111.06847 | DOI
[43] Mason L.J., Reid-Edwards R.A., The supersymmetric Penrose transform in six dimensions, arXiv: 1212.6173
[44] Mason L.J., Reid-Edwards R.A., Taghavi-Chabert A., “Conformal field theories in six-dimensional twistor space”, J. Geom. Phys., 62 (2012), 2353–2375, arXiv: 1111.2585 | DOI | MR
[45] Mason L.J., Skinner D., “Ambitwistor strings and the scattering equations”, J. High Energy Phys., 2014:7 (2014), 048, 34 pp., arXiv: 1311.2564 | DOI | MR
[46] Monteiro R., O'Connell D., “The kinematic algebras from the scattering equations”, J. High Energy Phys., 2014:3 (2014), 110, 28 pp., arXiv: 1311.1151 | DOI | MR
[47] Naculich S.G., “Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles”, J. High Energy Phys., 2014:9 (2014), 029, 21 pp., arXiv: 1407.7836 | DOI
[48] Naculich S.G., “CHY representations for gauge theory and gravity amplitudes with up to three massive particles”, J. High Energy Phys., 2015:5 (2015), 050, 19 pp., arXiv: 1501.03500 | DOI | MR
[49] Ochirov A., “Helicity amplitudes for QCD with massive quarks”, J. High Energy Phys., 2018:4 (2018), 089, 22 pp., arXiv: 1802.06730 | DOI | MR
[50] Okano S., Deguchi S., “A no-go theorem for the $n$-twistor description of a massive particle”, J. Math. Phys., 58 (2017), 031701, 6 pp., arXiv: 1606.01339 | DOI | MR
[51] Penrose R., “Twistors and particles: an outline”, Quantum Theory and the Structure of Space-Time, Feldafing Conference of the Max-Planck Institute, Carl Hanser Verlag, Münich, 1975, 129–145
[52] Penrose R., “The twistor programme”, Rep. Math. Phys., 12 (1977), 65–76 | DOI | MR
[53] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR
[54] Perjés Z., “Twistor variables of relativistic mechanics”, Phys. Rev. D, 11 (1975), 2031–2041 | DOI | MR
[55] Perjés Z., “Perspectives of Penrose theory in particle physics”, Rep. Math. Phys., 12 (1977), 193–211 | DOI | MR
[56] Reid-Edwards R., On closed twistor string theory, arXiv: 1212.6047
[57] Roehrig K.A., Skinner D., “A gluing operator for the ambitwistor string”, J. High Energy Phys., 2018:1 (2018), 069, 33 pp., arXiv: 1709.03262 | DOI | MR
[58] Roiban R., Spradlin M., Volovich A., “Tree-level $S$ matrix of Yang–Mills theory”, Phys. Rev. D, 70 (2004), 026009, 10 pp., arXiv: hep-th/0403190 | DOI | MR
[59] Roiban R., Volovich A., “All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space”, Phys. Rev. Lett., 93 (2004), 131602, 4 pp., arXiv: hep-th/0402121 | DOI | MR
[60] Sämann C., Wolf M., “On twistors and conformal field theories from six dimensions”, J. Math. Phys., 54 (2013), 013507, 44 pp., arXiv: 1111.2539 | DOI | MR
[61] Sämann C., Wolf M., “Non-abelian tensor multiplet equations from twistor space”, Comm. Math. Phys., 328 (2014), 527–544, arXiv: 1205.3108 | DOI | MR
[62] Schwarz J.H., Wen C., “Unified formalism for 6D superamplitudes based on a symplectic Grassmannian”, J. High Energy Phys., 2019:8 (2019), 125, 26 pp., arXiv: 1907.03485 | DOI | MR
[63] Skinner D., “Twistor strings for $\mathcal N=8$ supergravity”, J. High Energy Phys., 2020:4 (2020), 047, 50 pp., arXiv: 1301.0868 | DOI | MR
[64] Tod P., “Some symplectic forms arising in twistor theory”, Rep. Math. Phys., 11 (1977), 339–346 | DOI | MR
[65] Witten E., Superstring perturbation theory revisited, arXiv: 1209.5461
[66] Witten E., “Perturbative gauge theory as a string theory in twistor space”, Comm. Math. Phys., 252 (2004), 189–258, arXiv: hep-th/0312171 | DOI | MR