Mots-clés : Guichardet space
@article{SIGMA_2022_18_a43,
author = {John E. Gough},
title = {Field {Calculus:} {Quantum} and {Statistical} {Field} {Theory} without the {Feynman} {Diagrams}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a43/}
}
John E. Gough. Field Calculus: Quantum and Statistical Field Theory without the Feynman Diagrams. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a43/
[1] Cvitanović P., Gyldenkerne E., Field theory, Nordita, Copenhagen, 1983
[2] Feynman R.P., “The theory of positrons”, Phys. Rev., 76 (1949), 749–759 | DOI | MR | Zbl
[3] Glimm J., Jaffe A., Quantum physics. A functional integral point of view, 2nd ed., Springer-Verlag, New York, 1987 | DOI | MR
[4] Gough J., Kupsch J., Quantum fields and processes. A combinatorial approach, Cambridge Studies in Advanced Mathematics, 171, Cambridge University Press, Cambridge, 2018 | DOI | MR | Zbl
[5] Guichardet A., Symmetric Hilbert spaces and related topics. Infinitely divisible positive definite functions. Continuous products and tensor products. Gaussian and Poissonian stochastic processes, Lecture Notes in Math., 261, Springer-Verlag, Berlin – New York, 1972 | DOI | MR | Zbl
[6] Maassen H., “Quantum Markov processes on Fock space described by integral kernels”, Quantum Probability and Applications (Heidelberg, 1984), v. II, Lecture Notes in Math., 1136, Springer, Berlin, 1985, 361–374 | DOI | MR
[7] Meyer P.-A., Quantum probability for probabilists, Lecture Notes in Math., 1538, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[8] Parthasarathy K.R., An introduction to quantum stochastic calculus, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1992 | DOI | MR | Zbl
[9] Rivers R.J., Path integral methods in quantum field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl
[10] Schweber S.S., QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1994 | MR | Zbl
[11] Schwinger J., “A report on quantum electrodynamics”, The Physicist's Conception of Nature, ed. J. Mehra, Springer, Dordrecht, 1973, 413–429 | DOI
[12] The on-line encyclopedia of integer sequences, https://oeis.org/
[13] Veltman M., Diagrammatica. The path to Feynman rules, Cambridge Lecture Notes in Physics, 4, Cambridge University Press, Cambridge, 1994 | DOI | MR