Difference Equation for Quintic $3$-Fold
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we use the Mellin–Barnes–Watson method to relate solutions of a certain type of $q$-difference equations at $Q=0$ and $Q=\infty$. We consider two special cases; the first is the $q$-difference equation of $K$-theoretic $I$-function of the quintic, which is degree $25$; we use Adams' method to find the extra $20$ solutions at $Q=0$. The second special case is a fuchsian case, which is confluent to the differential equation of the cohomological $I$-function of the quintic. We compute the connection matrix and study the confluence of the $q$-difference structure.
Keywords: $q$-difference equation, quantum $K$-theory, Fermat quintic.
@article{SIGMA_2022_18_a42,
     author = {Yaoxinog Wen},
     title = {Difference {Equation} for {Quintic} $3${-Fold}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a42/}
}
TY  - JOUR
AU  - Yaoxinog Wen
TI  - Difference Equation for Quintic $3$-Fold
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a42/
LA  - en
ID  - SIGMA_2022_18_a42
ER  - 
%0 Journal Article
%A Yaoxinog Wen
%T Difference Equation for Quintic $3$-Fold
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a42/
%G en
%F SIGMA_2022_18_a42
Yaoxinog Wen. Difference Equation for Quintic $3$-Fold. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a42/

[1] Adams C.R., “On the irregular cases of the linear ordinary difference equation”, Trans. Amer. Math. Soc., 30 (1928), 507–541 | DOI | MR | Zbl

[2] Adams C.R., “Linear $q$-difference equations”, Bull. Amer. Math. Soc., 37 (1931), 361–400 | DOI | MR

[3] Candelas P., de la Ossa X.C., Green P.S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359 (1991), 21–74 | DOI | MR | Zbl

[4] Chiodo A., Ruan Y., “Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations”, Invent. Math., 182 (2010), 117–165, arXiv: 0812.4660 | DOI | MR | Zbl

[5] Garoufalidis S., Scheidegger E., “On the quantum K-theory of the quintic”, SIGMA, 18 (2022), 021, 20 pp., arXiv: 2101.07490 | DOI | MR | Zbl

[6] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[7] Givental A., “A mirror theorem for toric complete intersections”, Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math., 160, Birkhäuser Boston, Boston, MA, 1998, 141–175 | DOI | MR | Zbl

[8] Givental A., “On the WDVV equation in quantum $K$-theory”, Michigan Math. J., 48 (2000), 295–304, arXiv: math.AG/0003158 | DOI | MR | Zbl

[9] Givental A., Permutation-equivariant quantum $K$-theory V. Toric $q$-hypergeometric functions, arXiv: 1509.03903

[10] Gu W., Pei D., Zhang M., “On phases of 3d $\mathcal{N} = 2$ Chern–Simons-matter theories”, Nuclear Phys. B, 973 (2021), 115604, 20 pp., arXiv: 2105.02247 | DOI | MR | Zbl

[11] Lee Y.-P., “Quantum $K$-theory. I. Foundations”, Duke Math. J., 121 (2004), 389–424, arXiv: math.AG/0105014 | DOI | MR | Zbl

[12] Milanov T., Roquefeuil A., Confluence in quantum $K$-theory of weak Fano manifolds and $q$-oscillatory integrals for toric manifolds, arXiv: 2108.08620 | MR

[13] Roquefeuil A., Confluence of quantum $K$-theory to quantum cohomology for projective spaces, arXiv: 1911.00254 | Zbl

[14] Ruan Y., Wen Y., Quantum $K$-theory and $q$-difference equations, arXiv: 2109.02218

[15] Sauloy J., “Systèmes aux $q$-différences singuliers réguliers: classification, matrice de connexion et monodromie”, Ann. Inst. Fourier (Grenoble), 50 (2000), 1021–1071 | DOI | MR | Zbl

[16] Sauloy J., “Analytic study of $q$-difference equations”, Galois Theories of Linear Difference Equations: an Introduction, Math. Surveys Monogr., 211, Amer. Math. Soc., Providence, RI, 2016, 103–171 | DOI | MR | Zbl