Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive an expansion for the fundamental solution of Laplace's equation in flat-ring coordinates in three-dimensional Euclidean space. This expansion is a double series of products of functions that are harmonic in the interior and exterior of “flat rings”. These internal and external flat-ring harmonic functions are expressed in terms of simply-periodic Lamé functions. In a limiting case we obtain the expansion of the fundamental solution in toroidal coordinates.
Keywords: fundamental solution, separable curvilinear coordinate system, flat-ring cyclide coordinates, special functions
Mots-clés : Laplace's equation, orthogonal polynomials.
@article{SIGMA_2022_18_a40,
     author = {Lijuan Bi and Howard S. Cohl and Hans Volkmer},
     title = {Expansion for a {Fundamental} {Solution} of {Laplace's} {Equation} in {Flat-Ring} {Cyclide} {Coordinates}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a40/}
}
TY  - JOUR
AU  - Lijuan Bi
AU  - Howard S. Cohl
AU  - Hans Volkmer
TI  - Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a40/
LA  - en
ID  - SIGMA_2022_18_a40
ER  - 
%0 Journal Article
%A Lijuan Bi
%A Howard S. Cohl
%A Hans Volkmer
%T Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a40/
%G en
%F SIGMA_2022_18_a40
Lijuan Bi; Howard S. Cohl; Hans Volkmer. Expansion for a Fundamental Solution of Laplace's Equation in Flat-Ring Cyclide Coordinates. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a40/

[1] Bateman H., Partial differential equations of mathematical physics, Cambridge University Press, New York, 1959 | MR | Zbl

[2] Blimke J., Myklebust J., Volkmer H., Merrill S., “Four-shell ellipsoidal model employing multipole expansion in ellipsoidal coordinates”, Med. Biol. Eng. Comput., 46 (2008), 859–869 | DOI

[3] Bôcher M., Über die Reihenentwickelungen der Potentialtheorie, B.G. Teubner, Leipzig, 1894

[4] Coddington E.A., An introduction to ordinary differential equations, Prentice-Hall Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961 | MR | Zbl

[5] Cohl H.S., Tohline J.E., “A compact cylindrical Green's function expansion for the solution of potential problems”, Astrophys. J., 527 (1999), 86–101 | DOI

[6] Cohl H.S., Volkmer H., “Separation of variables in an asymmetric cyclidic coordinate system”, J. Math. Phys., 54 (2013), 063513, 23 pp., arXiv: 1301.3559 | DOI | MR | Zbl

[7] Cohl H.S., Volkmer H., “Expansions for a fundamental solution of Laplace's equation on $\mathbb{R}^3$ in 5-cyclidic harmonics”, Anal. Appl. (Singap.), 12 (2014), 613–633, arXiv: 1311.3514 | DOI | MR | Zbl

[8] Courant R., Hilbert D., Methoden der mathematischen Physik, Heidelberger Taschenbücher, 30, Springer-Verlag, Berlin –Heidelberg, 1993 | DOI | MR

[9] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, v. III, Robert E. Krieger Publishing Co. Inc., Melbourne, Fla., 1981 | MR

[10] Gradshteyn I.S., Ryzhik I.M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl

[11] Heine E., Handbuch der Kugelfunctionen, Theorie und Anwendungen, v. 2, Druck und Verlag von G. Reimer, Berlin, 1881

[12] Kellogg O.D., Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, 31, Springer-Verlag, Berlin – New York, 1967 | DOI | MR

[13] Lebedev N.N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl

[14] Magnus W., Winkler S., Hill's equation, Interscience Tracts in Pure and Applied Mathematics, 20, Interscience Publishers John Wiley Sons, New York – London – Sydney, 1966 | MR

[15] Miller Jr. W., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass. – London – Amsterdam, 1977 | MR | Zbl

[16] Moon P., Spencer D.E., Field theory handbook. Including coordinate systems, differential equations and their solution, Springer-Verlag, Berlin –Heidelberg, 1988 | DOI | MR

[17] Morse P.M., Feshbach H., Methods of theoretical physics, v. 1, 2, McGraw-Hill Book Co., Inc., New York – Toronto – London, 1953 | MR | Zbl

[18] Olver F.W.J., Olde Daalhuis A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A. (Editors), NIST Digital Library of Mathematical Functions, Release 1.1.5 of 2022-03-15, https://dlmf.nist.gov/

[19] Poole E.G.C., “Dirichlet's principle for a flat ring”, Proc. London Math. Soc., 29 (1929), 342–354 | DOI | MR | Zbl

[20] Poole E.G.C., “Dirichlet's principle for a flat ring”, Proc. London Math. Soc., 30 (1929), 174–186 | DOI | MR | Zbl

[21] Volkmer H., “Integral representations for products of Lamé functions by use of fundamental solutions”, SIAM J. Math. Anal., 15 (1984), 559–569 | DOI | MR | Zbl

[22] Walter W., Ordinary differential equations, Graduate Texts in Mathematics, 182, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[23] Wangerin A., Reduction der Potentialgleichung für gewisse Rotationskörper auf eine gewöhnliche Differentialgleichung, Preisschr. der Jabl. Ges. Leipzig, Hirzel, 1875

[24] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl

[25] Zachmanoglou E.C., Thoe D.W., Introduction to partial differential equations with applications, Williams Wilkins Co., Baltimore, Md., 1976 | MR | Zbl