Mots-clés : Lie algebras
@article{SIGMA_2022_18_a4,
author = {Ian Marquette and Christiane Quesne},
title = {Ladder {Operators} and {Hidden} {Algebras} for {Shape} {Invariant} {Nonseparable} and {Nondiagonalizable} {Models} with {Quadratic} {Complex} {Interaction.} {II.~Three-Dimensional} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a4/}
}
TY - JOUR AU - Ian Marquette AU - Christiane Quesne TI - Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Models with Quadratic Complex Interaction. II. Three-Dimensional Model JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a4/ LA - en ID - SIGMA_2022_18_a4 ER -
%0 Journal Article %A Ian Marquette %A Christiane Quesne %T Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Models with Quadratic Complex Interaction. II. Three-Dimensional Model %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a4/ %G en %F SIGMA_2022_18_a4
Ian Marquette; Christiane Quesne. Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Models with Quadratic Complex Interaction. II. Three-Dimensional Model. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a4/
[1] Bagchi B. K., Supersymmetry in quantum and classical mechanics, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 116, Chapman Hall/CRC, Boca Raton, FL, 2001 | Zbl
[2] Bardavelidze M. S., Cannata F., Ioffe M. V., Nishnianidze D. N., “Three-dimensional shape invariant non-separable model with equidistant spectrum”, J. Math. Phys., 54 (2013), 012107, 11 pp., arXiv: 1212.4805 | DOI | MR | Zbl
[3] Bender C. M., “Introduction to ${\mathcal{PT}}$-symmetric quantum theory”, Contemp. Phys., 46 (2005), 277–292, arXiv: quant-ph/0501052 | DOI
[4] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018, arXiv: hep-th/0703096 | DOI | MR
[5] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having ${\mathcal{PT}}$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246, arXiv: physics/9712001 | DOI | MR | Zbl
[6] Bender C. M., Dunne G. V., Meisinger P. N., Ṣimṣek M., “Quantum complex Hénon–Heiles potentials”, Phys. Lett. A, 281 (2001), 311–316, arXiv: quant-ph/0101095 | DOI | MR | Zbl
[7] Cannata F., Ioffe M. V., Nishnianidze D. N., “New methods for the two-dimensional Schrödinger equation: SUSY-separation of variables and shape invariance”, J. Phys. A: Math. Gen., 35 (2002), 1389–1404, arXiv: hep-th/0201080 | DOI | MR | Zbl
[8] Cannata F., Ioffe M. V., Nishnianidze D. N., “Exactly solvable nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction”, J. Math. Phys., 51 (2010), 022108, 14 pp., arXiv: 0910.0590 | DOI | MR | Zbl
[9] Cannata F., Ioffe M. V., Nishnianidze D. N., “Equidistance of the complex two-dimensional anharmonic oscillator spectrum: the exact solution”, J. Phys. A: Math. Theor., 45 (2012), 295303, 11 pp., arXiv: 1206.4013 | DOI | Zbl
[10] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR
[11] Frappat L., Sciarrino A., Sorba P., Dictionary on Lie superalgebras, arXiv: hep-th/9607161
[12] Gendenshtein L. E., “Derivation of exact spectra of the Schrödinger equation by means of supersymmetry”, JETP Lett., 38 (1983), 356–359
[13] Ioffe M. V., Cannata F., Nishnianidze D. N., “Exactly solvable two-dimensional complex model with a real spectrum”, Theoret. and Math. Phys., 148 (2006), 960–967, arXiv: hep-th/0512110 | DOI | MR | Zbl
[14] Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996 | DOI | Zbl
[15] Marquette I., Quesne C., “Ladder operators and hidden algebras for shape invariant nonseparable and nondiagonalizable models with quadratic complex interaction. I Two-dimensional model”, SIGMA, 18 (2022), 004, 11 pp., arXiv: 2010.15273 | DOI
[16] Moshinsky M., Smirnov Yu.F., The harmonic oscillator in modern physics, Harwood, Amsterdam, 1996 | Zbl
[17] Mostafazadeh A., “Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians”, J. Math. Phys., 43 (2002), 6343–6352, arXiv: math-ph/0207009 | DOI | MR
[18] Mostafazadeh A., “Pseudo-Hermiticity versus $\mathcal{PT}$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl
[19] Mostafazadeh A., “Erratum: Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians [J. Math. Phys. 43, 6343 (2002)]”, J. Math. Phys., 44 (2003), 943, arXiv: math-ph/0301030 | DOI | MR | Zbl
[20] Mostafazadeh A., “Pseudo-Hermitian representation of quantum mechanics”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1191–1306, arXiv: 0810.5643 | DOI | MR | Zbl
[21] Nanayakkara A., “Real eigenspectra in non-Hermitian multidimensional Hamiltonians”, Phys. Lett. A, 304 (2002), 67–72 | DOI | MR | Zbl
[22] Pauli W., “On Dirac's new method of field quantization”, Rev. Modern Phys., 15 (1943), 175–207 | DOI | MR | Zbl
[23] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Physics, 213 (1992), 74–101 | DOI | MR | Zbl