Dirac Operators for the Dunkl Angular Momentum Algebra
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a family of Dirac operators for the Dunkl angular momentum algebra depending on certain central elements of the group algebra of the Pin cover of the Weyl group inherent to the rational Cherednik algebra. We prove an analogue of Vogan's conjecture for this family of operators and use this to show that the Dirac cohomology, when non-zero, determines the central character of representations of the angular momentum algebra. Furthermore, interpreting this algebra in the framework of (deformed) Howe dualities, we show that the natural Dirac element we define yields, up to scalars, a square root of the angular part of the Calogero–Moser Hamiltonian.
Keywords: Dirac operators, Calogero–Moser angular momentum, rational Cherednik algebras.
@article{SIGMA_2022_18_a39,
     author = {Kieran Calvert and Marcelo De Martino},
     title = {Dirac {Operators} for the {Dunkl} {Angular} {Momentum} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a39/}
}
TY  - JOUR
AU  - Kieran Calvert
AU  - Marcelo De Martino
TI  - Dirac Operators for the Dunkl Angular Momentum Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a39/
LA  - en
ID  - SIGMA_2022_18_a39
ER  - 
%0 Journal Article
%A Kieran Calvert
%A Marcelo De Martino
%T Dirac Operators for the Dunkl Angular Momentum Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a39/
%G en
%F SIGMA_2022_18_a39
Kieran Calvert; Marcelo De Martino. Dirac Operators for the Dunkl Angular Momentum Algebra. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a39/

[1] Atiyah M., Schmid W., “A geometric construction of the discrete series for semisimple Lie groups”, Invent. Math., 42 (1977), 1–62 | DOI | MR | Zbl

[2] Barbasch D., Ciubotaru D., Trapa P.E., “Dirac cohomology for graded affine Hecke algebras”, Acta Math., 209 (2012), 197–227, arXiv: 1006.3822 | DOI | MR | Zbl

[3] Calvert K., “Dirac cohomology, the projective supermodules of the symmetric group and the Vogan morphism”, Q. J. Math., 70 (2019), 535–563, arXiv: 1705.06478 | DOI | MR

[4] Calvert K., “Dirac cohomology of the Dunkl–Opdam subalgebra via inherited Drinfeld properties”, Comm. Algebra, 48 (2020), 1476–1498, arXiv: 1806.10862 | DOI | MR | Zbl

[5] Ciubotaru D., “Dirac cohomology for symplectic reflection algebras”, Selecta Math. (N.S.), 22 (2016), 111–144, arXiv: 1502.05671 | DOI | MR | Zbl

[6] Ciubotaru D., De Martino M., “Dirac induction for rational Cherednik algebras”, Int. Math. Res. Not., 2020 (2020), 5155–5214, arXiv: 1710.06847 | DOI | MR | Zbl

[7] Ciubotaru D., De Martino M., “The Dunkl–Cherednik deformation of a Howe duality”, J. Algebra, 560 (2020), 914–959, arXiv: 1812.00502 | DOI | MR | Zbl

[8] Ciubotaru D., Opdam E.M., Trapa P.E., “Algebraic and analytic Dirac induction for graded affine Hecke algebras”, J. Inst. Math. Jussieu, 13 (2014), 447–486, arXiv: 1201.2130 | DOI | MR | Zbl

[9] De Bie H., Oste R., Van der Jeugt J., “On the algebra of symmetries of Laplace and Dirac operators”, Lett. Math. Phys., 108 (2018), 1905–1953, arXiv: 1701.05760 | DOI | MR | Zbl

[10] De Bie H., Oste R., Van der Jeugt J., “The total angular momentum algebra related to the ${\rm S}_3$ Dunkl Dirac equation”, Ann. Physics, 389 (2018), 192–218, arXiv: 1705.08751 | DOI | MR | Zbl

[11] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI | MR | Zbl

[12] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras (with an appendix by Stephen Griffeth)”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl

[13] Feigin M., Hakobyan T., “On Dunkl angular momenta algebra”, J. High Energy Phys., 2015:11 (2015), 107, 23 pp., arXiv: 1409.2480 | DOI | MR

[14] Feigin M., Hakobyan T., Algebra of Dunkl Laplace–Runge–Lenz vector, arXiv: 1907.06706 | MR

[15] Heckman G.J., “A remark on the Dunkl differential-difference operators”, Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, 181–191 | DOI | MR

[16] Howe R., “Remarks on classical invariant theory”, Trans. Amer. Math. Soc., 313 (1989), 539–570 | DOI | MR | Zbl

[17] Huang J.-S., Pandžić P., “Dirac cohomology, unitary representations and a proof of a conjecture of Vogan”, J. Amer. Math. Soc., 15 (2002), 185–202 | DOI | MR | Zbl

[18] Kleshchev A., Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[19] Kostant B., “Dirac cohomology for the cubic Dirac operator”, Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., 210, Birkhäuser Boston, Boston, MA, 2003, 69–93, arXiv: math.RT/0208048 | DOI | MR | Zbl

[20] Morris A.O., “Projective representations of reflection groups”, Proc. London Math. Soc., 32 (1976), 403–420 | DOI | MR | Zbl

[21] Parthasarathy R., “Dirac operator and the discrete series”, Ann. of Math., 96 (1972), 1–30 | DOI | MR | Zbl

[22] Vogan Jr. D.A., Lectures on the Dirac operator I–III, unpublished notes, Massachusetts Institute of Technology, 1997

[23] Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939 | MR