@article{SIGMA_2022_18_a39,
author = {Kieran Calvert and Marcelo De Martino},
title = {Dirac {Operators} for the {Dunkl} {Angular} {Momentum} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a39/}
}
Kieran Calvert; Marcelo De Martino. Dirac Operators for the Dunkl Angular Momentum Algebra. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a39/
[1] Atiyah M., Schmid W., “A geometric construction of the discrete series for semisimple Lie groups”, Invent. Math., 42 (1977), 1–62 | DOI | MR | Zbl
[2] Barbasch D., Ciubotaru D., Trapa P.E., “Dirac cohomology for graded affine Hecke algebras”, Acta Math., 209 (2012), 197–227, arXiv: 1006.3822 | DOI | MR | Zbl
[3] Calvert K., “Dirac cohomology, the projective supermodules of the symmetric group and the Vogan morphism”, Q. J. Math., 70 (2019), 535–563, arXiv: 1705.06478 | DOI | MR
[4] Calvert K., “Dirac cohomology of the Dunkl–Opdam subalgebra via inherited Drinfeld properties”, Comm. Algebra, 48 (2020), 1476–1498, arXiv: 1806.10862 | DOI | MR | Zbl
[5] Ciubotaru D., “Dirac cohomology for symplectic reflection algebras”, Selecta Math. (N.S.), 22 (2016), 111–144, arXiv: 1502.05671 | DOI | MR | Zbl
[6] Ciubotaru D., De Martino M., “Dirac induction for rational Cherednik algebras”, Int. Math. Res. Not., 2020 (2020), 5155–5214, arXiv: 1710.06847 | DOI | MR | Zbl
[7] Ciubotaru D., De Martino M., “The Dunkl–Cherednik deformation of a Howe duality”, J. Algebra, 560 (2020), 914–959, arXiv: 1812.00502 | DOI | MR | Zbl
[8] Ciubotaru D., Opdam E.M., Trapa P.E., “Algebraic and analytic Dirac induction for graded affine Hecke algebras”, J. Inst. Math. Jussieu, 13 (2014), 447–486, arXiv: 1201.2130 | DOI | MR | Zbl
[9] De Bie H., Oste R., Van der Jeugt J., “On the algebra of symmetries of Laplace and Dirac operators”, Lett. Math. Phys., 108 (2018), 1905–1953, arXiv: 1701.05760 | DOI | MR | Zbl
[10] De Bie H., Oste R., Van der Jeugt J., “The total angular momentum algebra related to the ${\rm S}_3$ Dunkl Dirac equation”, Ann. Physics, 389 (2018), 192–218, arXiv: 1705.08751 | DOI | MR | Zbl
[11] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI | MR | Zbl
[12] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras (with an appendix by Stephen Griffeth)”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl
[13] Feigin M., Hakobyan T., “On Dunkl angular momenta algebra”, J. High Energy Phys., 2015:11 (2015), 107, 23 pp., arXiv: 1409.2480 | DOI | MR
[14] Feigin M., Hakobyan T., Algebra of Dunkl Laplace–Runge–Lenz vector, arXiv: 1907.06706 | MR
[15] Heckman G.J., “A remark on the Dunkl differential-difference operators”, Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progr. Math., 101, Birkhäuser Boston, Boston, MA, 1991, 181–191 | DOI | MR
[16] Howe R., “Remarks on classical invariant theory”, Trans. Amer. Math. Soc., 313 (1989), 539–570 | DOI | MR | Zbl
[17] Huang J.-S., Pandžić P., “Dirac cohomology, unitary representations and a proof of a conjecture of Vogan”, J. Amer. Math. Soc., 15 (2002), 185–202 | DOI | MR | Zbl
[18] Kleshchev A., Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[19] Kostant B., “Dirac cohomology for the cubic Dirac operator”, Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., 210, Birkhäuser Boston, Boston, MA, 2003, 69–93, arXiv: math.RT/0208048 | DOI | MR | Zbl
[20] Morris A.O., “Projective representations of reflection groups”, Proc. London Math. Soc., 32 (1976), 403–420 | DOI | MR | Zbl
[21] Parthasarathy R., “Dirac operator and the discrete series”, Ann. of Math., 96 (1972), 1–30 | DOI | MR | Zbl
[22] Vogan Jr. D.A., Lectures on the Dirac operator I–III, unpublished notes, Massachusetts Institute of Technology, 1997
[23] Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939 | MR