Mots-clés : Poisson manifold
@article{SIGMA_2022_18_a37,
author = {Misael Avenda\~no-Camacho and Claudio C\'esar Garc{\'\i}a-Mendoza and Jos\'e Crisp{\'\i}n Ruiz-Pantale\'on and Eduardo Velasco-Barreras},
title = {Geometrical {Aspects} of the {Hamiltonization} {Problem} of {Dynamical} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/}
}
TY - JOUR AU - Misael Avendaño-Camacho AU - Claudio César García-Mendoza AU - José Crispín Ruiz-Pantaleón AU - Eduardo Velasco-Barreras TI - Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/ LA - en ID - SIGMA_2022_18_a37 ER -
%0 Journal Article %A Misael Avendaño-Camacho %A Claudio César García-Mendoza %A José Crispín Ruiz-Pantaleón %A Eduardo Velasco-Barreras %T Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/ %G en %F SIGMA_2022_18_a37
Misael Avendaño-Camacho; Claudio César García-Mendoza; José Crispín Ruiz-Pantaleón; Eduardo Velasco-Barreras. Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/
[1] Abarbanel H.D.I., Rouhi A., “Hamiltonian structures for smooth vector fields”, Phys. Lett. A, 124 (1987), 281–286 | DOI | MR
[2] Alvarado-Flores R., Hernández-Dávila J.M., Agüero-Granado M., “Local hamiltonization and foliation: a new solution to the hamiltonization problem”, Electromagn. Phenomena, 6 (2006), 189–201
[3] Ballesteros A., Blasco A., Gutierrez-Sagredo I., “Hamiltonian structure of compartmental epidemiological models”, Phys. D, 413 (2020), 132656, 18 pp., arXiv: 2006.00564 | DOI | MR | Zbl
[4] Bogoyavlenskij O.I., “Extended integrability and bi-Hamiltonian systems”, Comm. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl
[5] Bolsinov A.V., Borisov A.V., Mamaev I.S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16 (2011), 443–464 | DOI | MR | Zbl
[6] Cairó L., Feix M.R., “Families of invariants of the motion for the Lotka–Volterra equations: the linear polynomials family”, J. Math. Phys., 33 (1992), 2440–2455 | DOI | MR | Zbl
[7] Damianou P.A., Petalidou F., “Poisson brackets with prescribed Casimirs”, Canad. J. Math., 64 (2012), 991–1018, arXiv: 1103.0849 | DOI | MR | Zbl
[8] Dazord P., Hector G., “Intégration symplectique des variétés de Poisson totalement asphériques”, Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 37–72 | DOI | MR
[9] del Hoyo M., Fernandes R.L., “Riemannian metrics on Lie groupoids”, J. Reine Angew. Math., 735 (2018), 143–173, arXiv: 1404.5989 | DOI | MR | Zbl
[10] Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl
[11] Duistermaat J.J., Kolk J.A.C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[12] Fassò F., Giacobbe A., Sansonetto N., “Periodic flows, rank-two Poisson structures, and nonholonomic mechanics”, Regul. Chaotic Dyn., 10 (2005), 267–284 | DOI | MR | Zbl
[13] Fedorov Yu.N., García-Naranjo L.C., Marrero J.C., “Unimodularity and preservation of volumes in nonholonomic mechanics”, J. Nonlinear Sci., 25 (2015), 203–246, arXiv: 1304.1788 | DOI | MR | Zbl
[14] Gammella A., “An approach to the tangential Poisson cohomology based on examples in duals of Lie algebras”, Pacific J. Math., 203 (2002), 283–320, arXiv: math.DG/0207215 | DOI | MR | Zbl
[15] Gao P., “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl
[16] Gümral H., Nutku Y., “Poisson structure of dynamical systems with three degrees of freedom”, J. Math. Phys., 34 (1993), 5691–5723 | DOI | MR | Zbl
[17] Hernández-Bermejo B., Fairén V., “A constant of motion in $3$D implies a local generalized Hamiltonian structure”, Phys. Lett. A, 234 (1997), 35–40, arXiv: 1910.03888 | DOI | MR
[18] Hirsch M.W., “On imbedding differentiable manifolds in euclidean space”, Ann. of Math., 73 (1961), 566–571 | DOI | MR | Zbl
[19] Hojman S.A., “Quantum algebras in classical mechanics”, J. Phys. A: Math. Gen., 24 (1991), L249–L254 | DOI | MR | Zbl
[20] Hojman S.A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A: Math. Gen., 29 (1996), 667–674 | DOI | MR | Zbl
[21] Kozlov V.V., “On the theory of integration of the equations of nonholonomic mechanics”, Adv. in Mech., 8 (1985), 85–107 | MR
[22] Kozlov V.V., “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56 (1992), 803–809 | DOI | MR | Zbl
[23] Kozlov V.V., “First integrals and asymptotic trajectories”, Sb. Math., 211 (2020), 29–54 | DOI | MR | Zbl
[24] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12 (1977), 253–300 | DOI | MR | Zbl
[25] Llibre J., Peralta-Salas D., “A note on the first integrals of vector fields with integrating factors and normalizers”, SIGMA, 8 (2012), 035, 9 pp., arXiv: 1206.3005 | DOI | MR | Zbl
[26] Perlick V., “The Hamiltonization problem from a global viewpoint”, J. Math. Phys., 33 (1992), 599–606 | DOI | MR | Zbl
[27] Pflaum M.J., Posthuma H., Tang X., “Geometry of orbit spaces of proper Lie groupoids”, J. Reine Angew. Math., 694 (2014), 49–84, arXiv: 1101.0180 | DOI | MR | Zbl
[28] Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl
[29] Vorob'ev Yu.M., Karasev M.V., “Poisson manifolds and the Schouten bracket”, Funct. Anal. Appl., 22 (1988), 1–9 | DOI | MR | Zbl
[30] Vorob'ev Yu.M., Karasev M.V., “Deformation and cohomologies of Poisson brackets”, Global Analysis – Studies and Applications, IV, Lecture Notes in Math., 1453, Springer, Berlin, 1990, 271–289 | DOI | MR
[31] Weinstein A., “The modular automorphism group of a Poisson manifold”, J. Geom. Phys., 23 (1997), 379–394 | DOI | MR | Zbl
[32] Whittaker E.T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988 | DOI | MR | Zbl