Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some positive answers to the problem of endowing a dynamical system with a Hamiltonian formulation are presented within the class of Poisson structures in a geometric framework. We address this problem on orientable manifolds and by using decomposable Poisson structures. In the first case, the existence of a Hamiltonian formulation is ensured under the vanishing of some topological obstructions, improving a result of Gao. In the second case, we apply a variant of the Hojman construction to solve the problem for vector fields admitting a transversally invariant metric and, in particular, for infinitesimal generators of proper actions. Finally, we also consider the hamiltonization problem for Lie group actions and give solutions in the particular case in which the acting Lie group is a low-dimensional torus.
Keywords: Hamiltonian formulation, first integral, unimodularity, transversally invariant metric, symmetry.
Mots-clés : Poisson manifold
@article{SIGMA_2022_18_a37,
     author = {Misael Avenda\~no-Camacho and Claudio C\'esar Garc{\'\i}a-Mendoza and Jos\'e Crisp{\'\i}n Ruiz-Pantale\'on and Eduardo Velasco-Barreras},
     title = {Geometrical {Aspects} of the {Hamiltonization} {Problem} of {Dynamical} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/}
}
TY  - JOUR
AU  - Misael Avendaño-Camacho
AU  - Claudio César García-Mendoza
AU  - José Crispín Ruiz-Pantaleón
AU  - Eduardo Velasco-Barreras
TI  - Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/
LA  - en
ID  - SIGMA_2022_18_a37
ER  - 
%0 Journal Article
%A Misael Avendaño-Camacho
%A Claudio César García-Mendoza
%A José Crispín Ruiz-Pantaleón
%A Eduardo Velasco-Barreras
%T Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/
%G en
%F SIGMA_2022_18_a37
Misael Avendaño-Camacho; Claudio César García-Mendoza; José Crispín Ruiz-Pantaleón; Eduardo Velasco-Barreras. Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a37/

[1] Abarbanel H.D.I., Rouhi A., “Hamiltonian structures for smooth vector fields”, Phys. Lett. A, 124 (1987), 281–286 | DOI | MR

[2] Alvarado-Flores R., Hernández-Dávila J.M., Agüero-Granado M., “Local hamiltonization and foliation: a new solution to the hamiltonization problem”, Electromagn. Phenomena, 6 (2006), 189–201

[3] Ballesteros A., Blasco A., Gutierrez-Sagredo I., “Hamiltonian structure of compartmental epidemiological models”, Phys. D, 413 (2020), 132656, 18 pp., arXiv: 2006.00564 | DOI | MR | Zbl

[4] Bogoyavlenskij O.I., “Extended integrability and bi-Hamiltonian systems”, Comm. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl

[5] Bolsinov A.V., Borisov A.V., Mamaev I.S., “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16 (2011), 443–464 | DOI | MR | Zbl

[6] Cairó L., Feix M.R., “Families of invariants of the motion for the Lotka–Volterra equations: the linear polynomials family”, J. Math. Phys., 33 (1992), 2440–2455 | DOI | MR | Zbl

[7] Damianou P.A., Petalidou F., “Poisson brackets with prescribed Casimirs”, Canad. J. Math., 64 (2012), 991–1018, arXiv: 1103.0849 | DOI | MR | Zbl

[8] Dazord P., Hector G., “Intégration symplectique des variétés de Poisson totalement asphériques”, Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., 20, Springer, New York, 1991, 37–72 | DOI | MR

[9] del Hoyo M., Fernandes R.L., “Riemannian metrics on Lie groupoids”, J. Reine Angew. Math., 735 (2018), 143–173, arXiv: 1404.5989 | DOI | MR | Zbl

[10] Dufour J.-P., Zung N.T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl

[11] Duistermaat J.J., Kolk J.A.C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[12] Fassò F., Giacobbe A., Sansonetto N., “Periodic flows, rank-two Poisson structures, and nonholonomic mechanics”, Regul. Chaotic Dyn., 10 (2005), 267–284 | DOI | MR | Zbl

[13] Fedorov Yu.N., García-Naranjo L.C., Marrero J.C., “Unimodularity and preservation of volumes in nonholonomic mechanics”, J. Nonlinear Sci., 25 (2015), 203–246, arXiv: 1304.1788 | DOI | MR | Zbl

[14] Gammella A., “An approach to the tangential Poisson cohomology based on examples in duals of Lie algebras”, Pacific J. Math., 203 (2002), 283–320, arXiv: math.DG/0207215 | DOI | MR | Zbl

[15] Gao P., “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl

[16] Gümral H., Nutku Y., “Poisson structure of dynamical systems with three degrees of freedom”, J. Math. Phys., 34 (1993), 5691–5723 | DOI | MR | Zbl

[17] Hernández-Bermejo B., Fairén V., “A constant of motion in $3$D implies a local generalized Hamiltonian structure”, Phys. Lett. A, 234 (1997), 35–40, arXiv: 1910.03888 | DOI | MR

[18] Hirsch M.W., “On imbedding differentiable manifolds in euclidean space”, Ann. of Math., 73 (1961), 566–571 | DOI | MR | Zbl

[19] Hojman S.A., “Quantum algebras in classical mechanics”, J. Phys. A: Math. Gen., 24 (1991), L249–L254 | DOI | MR | Zbl

[20] Hojman S.A., “The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system”, J. Phys. A: Math. Gen., 29 (1996), 667–674 | DOI | MR | Zbl

[21] Kozlov V.V., “On the theory of integration of the equations of nonholonomic mechanics”, Adv. in Mech., 8 (1985), 85–107 | MR

[22] Kozlov V.V., “Linear systems with a quadratic integral”, J. Appl. Math. Mech., 56 (1992), 803–809 | DOI | MR | Zbl

[23] Kozlov V.V., “First integrals and asymptotic trajectories”, Sb. Math., 211 (2020), 29–54 | DOI | MR | Zbl

[24] Lichnerowicz A., “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Differential Geometry, 12 (1977), 253–300 | DOI | MR | Zbl

[25] Llibre J., Peralta-Salas D., “A note on the first integrals of vector fields with integrating factors and normalizers”, SIGMA, 8 (2012), 035, 9 pp., arXiv: 1206.3005 | DOI | MR | Zbl

[26] Perlick V., “The Hamiltonization problem from a global viewpoint”, J. Math. Phys., 33 (1992), 599–606 | DOI | MR | Zbl

[27] Pflaum M.J., Posthuma H., Tang X., “Geometry of orbit spaces of proper Lie groupoids”, J. Reine Angew. Math., 694 (2014), 49–84, arXiv: 1101.0180 | DOI | MR | Zbl

[28] Vaisman I., Lectures on the geometry of Poisson manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl

[29] Vorob'ev Yu.M., Karasev M.V., “Poisson manifolds and the Schouten bracket”, Funct. Anal. Appl., 22 (1988), 1–9 | DOI | MR | Zbl

[30] Vorob'ev Yu.M., Karasev M.V., “Deformation and cohomologies of Poisson brackets”, Global Analysis – Studies and Applications, IV, Lecture Notes in Math., 1453, Springer, Berlin, 1990, 271–289 | DOI | MR

[31] Weinstein A., “The modular automorphism group of a Poisson manifold”, J. Geom. Phys., 23 (1997), 379–394 | DOI | MR | Zbl

[32] Whittaker E.T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988 | DOI | MR | Zbl