@article{SIGMA_2022_18_a36,
author = {Si-Qi Liu and Zhe Wang and Youjin Zhang},
title = {Reduction of the {2D} {Toda} {Hierarchy} and {Linear} {Hodge} {Integrals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a36/}
}
TY - JOUR AU - Si-Qi Liu AU - Zhe Wang AU - Youjin Zhang TI - Reduction of the 2D Toda Hierarchy and Linear Hodge Integrals JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a36/ LA - en ID - SIGMA_2022_18_a36 ER -
Si-Qi Liu; Zhe Wang; Youjin Zhang. Reduction of the 2D Toda Hierarchy and Linear Hodge Integrals. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a36/
[1] Bouchard V., Mariño M., “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT tt*-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI | MR | Zbl
[2] Brini A., “The local Gromov–Witten theory of $\mathbb{C}\mathbb{P}^1$ and integrable hierarchies”, Comm. Math. Phys., 313 (2012), 571–605, arXiv: 1002.0582 | DOI | MR | Zbl
[3] Buryak A., “Dubrovin–Zhang hierarchy for the Hodge integrals”, Commun. Number Theory Phys., 9 (2015), 239–272, arXiv: 1308.5716 | DOI | MR
[4] Buryak A., Rossi P., “Simple Lax description of the ILW hierarchy”, SIGMA, 14 (2018), 120, 7 pp., arXiv: 1809.00271 | DOI | MR | Zbl
[5] Carlet G., Dubrovin B., Zhang Y., “The extended Toda hierarchy”, Mosc. Math. J., 4 (2004), 313–332, arXiv: nlin.SI/0306060 | DOI | MR | Zbl
[6] Dubrovin B., Liu S.-Q., Yang D., Zhang Y., “Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs”, Adv. Math., 293 (2016), 382–435, arXiv: 1409.4616 | DOI | MR | Zbl
[7] Getzler E., “The Toda conjecture”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 51–79, arXiv: math.AG/0108108 | DOI | MR | Zbl
[8] Gosper Jr. R.W., “Decision procedure for indefinite hypergeometric summation”, Proc. Nat. Acad. Sci. USA, 75 (1978), 40–42 | DOI | MR | Zbl
[9] Liu C.-C.M., Liu K., Zhou J., “A proof of a conjecture of Mariño–Vafa on Hodge integrals”, J. Differential Geom., 65 (2003), 289–340, arXiv: math.AG/0306434 | DOI | MR | Zbl
[10] Liu C.-C.M., Liu K., Zhou J., “Mariño–Vafa formula and Hodge integral identities”, J. Algebraic Geom., 15 (2006), 379–398, arXiv: math.AG/0308015 | DOI | MR | Zbl
[11] Liu S.-Q., Yang D., Zhang Y., Zhou C., “The Hodge-FVH correspondence”, J. Reine Angew. Math., 775 (2021), 259–300, arXiv: 1906.06860 | DOI | MR | Zbl
[12] Liu S.-Q., Zhang Y., Zhou C., “Fractional Volterra hierarchy”, Lett. Math. Phys., 108 (2018), 261–283, arXiv: 1702.02840 | DOI | MR | Zbl
[13] Mariño M., Vafa C., “Framed knots at large $N$”, Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002, 185–204, arXiv: hep-th/0108064 | DOI | MR | Zbl
[14] Mulase M., Zhang N., “Polynomial recursion formula for linear Hodge integrals”, Commun. Number Theory Phys., 4 (2010), 267–293, arXiv: 0908.2267 | DOI | MR | Zbl
[15] Mumford D., “Towards an enumerative geometry of the moduli space of curves”, Arithmetic and Geometry, v. II, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983, 271–328 | DOI | MR
[16] Okounkov A., Pandharipande R., “The equivariant Gromov–Witten theory of $P^1$”, Ann. of Math., 163 (2006), 561–605, arXiv: math.AG/0207233 | DOI | MR | Zbl
[17] Takasaki K., “Toda hierarchies and their applications”, J. Phys. A: Math. Theor., 51 (2018), 203001, 35 pp., arXiv: 1801.09924 | DOI | MR | Zbl
[18] Takasaki K., “Cubic Hodge integrals and integrable hierarchies of Volterra type”, Integrability, Quantization, and Geometry. I Integrable Systems, Proc. Sympos. Pure Math., 103, Amer. Math. Soc., Providence, RI, 2021, 481–502, arXiv: 1909.13095 | MR | Zbl
[19] Toda M., “Vibration of a chain with nonlinear interaction”, J. Phys. Soc. Japan, 22 (1967), 431–436 | DOI
[20] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1982, 1–95 | DOI | MR