Mots-clés : positive coefficients.
@article{SIGMA_2022_18_a35,
author = {Linnea Hietala},
title = {A {Combinatorial} {Description} of {Certain} {Polynomials} {Related} to the {XYZ} {Spin} {Chain.} {II.~The} {Polynomials~}$p_n$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a35/}
}
TY - JOUR AU - Linnea Hietala TI - A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain. II. The Polynomials $p_n$ JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a35/ LA - en ID - SIGMA_2022_18_a35 ER -
%0 Journal Article %A Linnea Hietala %T A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain. II. The Polynomials $p_n$ %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a35/ %G en %F SIGMA_2022_18_a35
Linnea Hietala. A Combinatorial Description of Certain Polynomials Related to the XYZ Spin Chain. II. The Polynomials $p_n$. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a35/
[1] Baxter R.J., “Three-colorings of the square lattice: a hard squares model”, J. Math. Phys., 11 (1970), 3116–3124 | DOI | MR | Zbl
[2] Baxter R.J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl
[3] Baxter R.J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I Some fundamental eigenvectors”, Ann. Physics, 76 (1973), 1–24 | DOI | MR | Zbl
[4] Bazhanov V.V., Mangazeev V.V., “Eight-vertex model and non-stationary Lamé equation”, J. Phys. A: Math. Gen., 38 (2005), L145–L153, arXiv: hep-th/0411094 | DOI | MR | Zbl
[5] Bazhanov V.V., Mangazeev V.V., “The eight-vertex model and Painlevé VI”, J. Phys. A: Math. Gen., 39 (2006), 12235–12243, arXiv: hep-th/0602122 | DOI | MR | Zbl
[6] Brasseur S., Hagendorf C., “Sum rules for the supersymmetric eight-vertex model”, J. Stat. Mech. Theory Exp., 2021 (2021), 023102, 45 pp., arXiv: 2009.14077 | DOI | MR | Zbl
[7] Filali G., “Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end”, J. Geom. Phys., 61 (2011), 1789–1796, arXiv: 1012.0516 | DOI | MR | Zbl
[8] Hagendorf C., Fendley P., “The eight-vertex model and lattice supersymmetry”, J. Stat. Phys., 146 (2012), 1122–1155, arXiv: 1109.4090 | DOI | MR | Zbl
[9] Hietala L., “A combinatorial description of certain polynomials related to the XYZ spin chain”, SIGMA, 16 (2020), 101, 26 pp., arXiv: 2004.09924 | DOI | MR | Zbl
[10] Izergin A.G., “Partition function of the six-vertex model in a finite volume”, Soviet Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[11] Izergin A.G., Coker D.A., Korepin V.E., “Determinant formula for the six-vertex model”, J. Phys. A: Math. Gen., 25 (1992), 4315–4334 | DOI | MR | Zbl
[12] Korepin V.E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[13] Kuperberg G., “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150, arXiv: math.CO/9712207 | DOI | MR | Zbl
[14] Kuperberg G., “Symmetry classes of alternating-sign matrices under one roof”, Ann. of Math., 156 (2002), 835–866, arXiv: math.CO/0008184 | DOI | MR
[15] Lieb E.H., “Residual entropy of square ice”, Phys. Rev., 162 (1967), 162–172 | DOI
[16] Mangazeev V.V., Bazhanov V.V., “The eight-vertex model and Painlevé VI equation II: eigenvector results”, J. Phys. A: Math. Theor., 43 (2010), 085206, 16 pp., arXiv: 0912.2163 | DOI | MR | Zbl
[17] Mills W.H., Robbins D.P., Rumsey Jr. H., “Alternating sign matrices and descending plane partitions”, J. Combin. Theory Ser. A, 34 (1983), 340–359 | DOI | MR | Zbl
[18] Razumov A.V., Stroganov Yu.G., “Spin chains and combinatorics”, J. Phys. A: Math. Gen., 34 (2001), 3185–3190, arXiv: cond-mat/0012141 | DOI | MR | Zbl
[19] Razumov A.V., Stroganov Yu.G., “Refined enumerations of some symmetry classes of alternating-sign matrices”, Theoret. and Math. Phys., 141 (2004), 1609–1630, arXiv: math-ph/0312071 | DOI | MR | Zbl
[20] Razumov A.V., Stroganov Yu.G., “A possible combinatorial point for the XYZ spin chain”, Theoret. and Math. Phys., 164 (2010), 977–991, arXiv: 0911.5030 | DOI | Zbl
[21] Rosengren H., “An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices”, Adv. in Appl. Math., 43 (2009), 137–155, arXiv: 0801.1229 | DOI | MR | Zbl
[22] Rosengren H., “The three-colour model with domain wall boundary conditions”, Adv. in Appl. Math., 46 (2011), 481–535, arXiv: 0911.0561 | DOI | MR | Zbl
[23] Rosengren H., Special polynomials related to the supersymmetric eight-vertex model. I Behaviour at cusps, arXiv: 1305.0666
[24] Rosengren H., “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Comm. Math. Phys., 340 (2015), 1143–1170, arXiv: 1503.02833 | DOI | MR | Zbl
[25] Sutherland B., “Exact solution of a two-dimensional model for hydrogen-bonded crystals”, Phys. Rev. Lett., 19 (1967), 103–104 | DOI
[26] Tsuchiya O., “Determinant formula for the six-vertex model with reflecting end”, J. Math. Phys., 39 (1998), 5946–5951, arXiv: solv-int/9804010 | DOI | MR | Zbl
[27] Wang Y.-S., “Boundary spontaneous polarization in the six-vertex model with a reflecting boundary”, J. Phys. A: Math. Gen., 36 (2003), 4007–4013 | DOI | MR | Zbl
[28] Zeilberger D., “Proof of the alternating sign matrix conjecture”, Electron. J. Combin., 3 (1996), R13, 84 pp., arXiv: math.CO/9407211 | DOI | MR | Zbl
[29] Zinn-Justin P., “Sum rule for the eight-vertex model on its combinatorial line”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 599–637, arXiv: 1202.4420 | DOI | MR | Zbl