@article{SIGMA_2022_18_a34,
author = {Franco Fagnola and Chul Ki Ko and Hyun Jae Yoo},
title = {The {Generalized} {Fibonacci} {Oscillator} as an {Open} {Quantum} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a34/}
}
TY - JOUR AU - Franco Fagnola AU - Chul Ki Ko AU - Hyun Jae Yoo TI - The Generalized Fibonacci Oscillator as an Open Quantum System JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a34/ LA - en ID - SIGMA_2022_18_a34 ER -
Franco Fagnola; Chul Ki Ko; Hyun Jae Yoo. The Generalized Fibonacci Oscillator as an Open Quantum System. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a34/
[1] Accardi L., García-Corte J.C., Guerrero-Poblete F., Quezada R., “Breaking of the similarity principle in Markov generators of low density limit type and the role of degeneracies in the landscape of invariant states”, Open Syst. Inf. Dyn., 27 (2020), 2050018, 40 pp. | DOI | MR | Zbl
[2] Accardi L., Lu Y.G., “The Wigner semi-circle law in quantum electrodynamics”, Comm. Math. Phys., 180 (1996), 605–632 http://projecteuclid.org/euclid.cmp/1104287457 | DOI | MR | Zbl
[3] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[4] Anderson W.J., Continuous-time Markov chains: an applications-oriented approach, Springer Series in Statistics: Probability and its Applications, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[5] Becker S., Datta N., Salzmann R., “Quantum Zeno effect in open quantum systems”, Ann. Henri Poincaré, 22 (2021), 3795–3840, arXiv: 2010.04121 | DOI | MR | Zbl
[6] Blitvić N., “The $(q,t)$-Gaussian process”, J. Funct. Anal., 263 (2012), 3270–3305 | DOI | MR | Zbl
[7] Bożejko M., “Remarks on $q$-CCR relations for $|q|>1$”, Noncommutative Harmonic Analysis with Applications to Probability, Banach Center Publ., 78, Polish Acad. Sci. Inst. Math., Warsaw, 2007, 59–67 | DOI | MR
[8] Bożejko M., Kümmerer B., Speicher R., “$q$-Gaussian processes: non-commutative and classical aspects”, Comm. Math. Phys., 185 (1997), 129–154, arXiv: funct-an/9604010 | DOI | MR
[9] Bożejko M., Lytvynov E., Wysoczański J., “Fock representations of $Q$-deformed commutation relations”, J. Math. Phys., 58 (2017), 073501, 19 pp., arXiv: 1603.03075 | DOI | MR
[10] Carbone R., Fagnola F., “Exponential $L_2$-convergence of quantum Markov semigroups on $\mathcal{B}(h)$”, Math. Notes, 68 (2000), 452–463 | DOI | MR | Zbl
[11] Carbone R., Sasso E., Umanità V., “Structure of generic quantum {M}arkov semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 20 (2017), 1750012, 19 pp. | DOI | MR | Zbl
[12] Carlen E.A., Maas J., “Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance”, J. Funct. Anal., 273 (2017), 1810–1869, arXiv: 1609.01254 | DOI | MR | Zbl
[13] Cipriani F., Fagnola F., Lindsay J.M., “Spectral analysis and Feller property for quantum Ornstein–Uhlenbeck semigroups”, Comm. Math. Phys., 210 (2000), 85–105 | DOI | MR | Zbl
[14] Daoud M., Kibler M., “Statistical mechanics of $qp$-bosons in $D$ dimensions”, Phys. Lett. A, 206 (1995), 13–17, arXiv: quant-ph/9512006 | DOI | MR | Zbl
[15] Deschamps J., Fagnola F., Sasso E., Umanità V., “Structure of uniformly continuous quantum Markov semigroups”, Rev. Math. Phys., 28 (2016), 1650003, 32 pp., arXiv: 1412.3239 | DOI | MR | Zbl
[16] Dhahri A., Fagnola F., Yoo H.J., “Quadratic open quantum harmonic oscillator”, Lett. Math. Phys., 110 (2020), 1759–1782, arXiv: 1905.09965 | DOI | MR | Zbl
[17] Fagnola F., “Quantum Markov semigroups and quantum flows”, Proyecciones, 18 (1999), 95–134 | DOI | MR
[18] Fagnola F., Quezada R., “A characterization of quantum Markov semigroups of weak coupling limit type”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 22 (2019), 1950008, 10 pp. | DOI | MR | Zbl
[19] Fagnola F., Umanità V., “Generic quantum Markov semigroups, cycle decomposition and deviation from equilibrium”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15 (2012), 1250016, 17 pp. | DOI | MR | Zbl
[20] Gavrilik A.M., Kachurik I.I., “Nonstandard deformed oscillators from $q$- and $p,q$-deformations of Heisenberg algebra”, SIGMA, 12 (2016), 047, 12 pp., arXiv: 1602.07927 | DOI | MR | Zbl
[21] Gerhold M., Skeide M., “Interacting Fock spaces and subproduct systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23 (2020), 2050017, 53 pp., arXiv: 1808.07037 | DOI | MR | Zbl
[22] Gough J., Kupsch J., Quantum fields and processes: a combinatorial approach, Cambridge Studies in Advanced Mathematics, 171, Cambridge University Press, Cambridge, 2018 | DOI | MR | Zbl
[23] Kumar D., Sinha K.B., Srivastava S., “Stability of the Markov (conservativity) property under perturbations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23 (2020), 2050009, 20 pp. | DOI | MR | Zbl
[24] Liggett T.M., “Exponential $L_2$ convergence of attractive reversible nearest particle systems”, Ann. Probab., 17 (1989), 403–432 | DOI | MR | Zbl
[25] Marinho A.A., Brito F.A., “Hermite polynomials and Fibonacci oscillators”, J. Math. Phys., 60 (2019), 012101, 9 pp., arXiv: 1805.03229 | DOI | MR | Zbl
[26] Mouayn Z., El Moize O., “A generalized Euler probability distribution”, Rep. Math. Phys., 87 (2021), 291–311 | DOI | MR | Zbl
[27] Mukhamedov F., Al-Rawashdeh A., “Generalized Dobrushin ergodicity coefficient and uniform ergodicities of Markov operators”, Positivity, 24 (2020), 855–890, arXiv: 2001.06266 | DOI | MR | Zbl
[28] Mukhamedov F., Al-Rawashdeh A., “Generalized Dobrushin ergodicity coefficient and ergodicities of non-homogeneous Markov chains”, Banach J. Math. Anal., 16 (2022), 18, 37 pp., arXiv: 2001.07703 | DOI | MR | Zbl
[29] Parthasarathy K.R., An introduction to quantum stochastic calculus, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1992 | DOI | MR | Zbl
[30] Schürmann M., von Waldenfels W., “A central limit theorem on the free Lie group”, Quantum Probability and Applications, III (Oberwolfach, 1987), Lecture Notes in Math., 1303, Springer, Berlin, 1988, 300–318 | DOI | MR