Witten–Reshetikhin–Turaev Invariants, Homological Blocks, and Quantum Modular Forms for Unimodular Plumbing H-Graphs
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gukov–Pei–Putrov–Vafa constructed $ q $-series invariants called homological blocks in a physical way in order to categorify Witten–Reshetikhin–Turaev (WRT) invariants and conjectured that radial limits of homological blocks are WRT invariants. In this paper, we prove their conjecture for unimodular H-graphs. As a consequence, it turns out that the WRT invariants of H-graphs yield quantum modular forms of depth two and of weight one with the quantum set $ \mathbb{Q} $. In the course of the proof of our main theorem, we first write the invariants as finite sums of rational functions. We second carry out a systematic study of weighted Gauss sums in order to give new vanishing results for them. Combining these results, we finally prove that the above conjecture holds for H-graphs.
Keywords: quantum invariants, Witten–Reshetikhin–Turaev invariants, homological blocks, quantum modular forms, plumbed manifolds
Mots-clés : false theta funcitons, Gauss sums.
@article{SIGMA_2022_18_a33,
     author = {Akihito Mori and Yuya Murakami},
     title = {Witten{\textendash}Reshetikhin{\textendash}Turaev {Invariants,} {Homological} {Blocks,} and {Quantum} {Modular} {Forms} {for~Unimodular} {Plumbing} {H-Graphs}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a33/}
}
TY  - JOUR
AU  - Akihito Mori
AU  - Yuya Murakami
TI  - Witten–Reshetikhin–Turaev Invariants, Homological Blocks, and Quantum Modular Forms for Unimodular Plumbing H-Graphs
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a33/
LA  - en
ID  - SIGMA_2022_18_a33
ER  - 
%0 Journal Article
%A Akihito Mori
%A Yuya Murakami
%T Witten–Reshetikhin–Turaev Invariants, Homological Blocks, and Quantum Modular Forms for Unimodular Plumbing H-Graphs
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a33/
%G en
%F SIGMA_2022_18_a33
Akihito Mori; Yuya Murakami. Witten–Reshetikhin–Turaev Invariants, Homological Blocks, and Quantum Modular Forms for Unimodular Plumbing H-Graphs. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a33/

[1] Andersen J.E., Mistegård W.E., “Resurgence analysis of quantum invariants of Seifert fibered homology spheres”, J. Lond. Math. Soc., 105 (2022), 709–764, arXiv: 1811.05376 | DOI | MR

[2] Bringmann K., Kaszian J., Milas A., “Higher depth quantum modular forms, multiple Eichler integrals, and $\mathfrak{sl}_3$ false theta functions”, Res. Math. Sci., 6 (2019), 20, 41 pp., arXiv: 1704.06891 | DOI | MR | Zbl

[3] Bringmann K., Mahlburg K., Milas A., “Higher depth quantum modular forms and plumbed 3-manifolds”, Lett. Math. Phys., 110 (2020), 2675–2702, arXiv: 1906.10722 | DOI | MR | Zbl

[4] Bringmann K., Milas A., “$\mathcal W$-algebras, false theta functions and quantum modular forms, I”, Int. Math. Res. Not., 2015 (2015), 11351–11387 | DOI | MR | Zbl

[5] Cheng M.C., Chun S., Ferrari F., Gukov S., Harrison S.M., “3d modularity”, J. High Energy Phys., 2019:10 (2019), 010, 93 pp., arXiv: 1809.10148 | DOI | MR

[6] Chun S., A resurgence analysis of the ${\rm SU}(2)$ Chern–Simons partition functions on a Brieskorn homology sphere $\Sigma(2,5,7)$, arXiv: 1701.03528 | MR

[7] Deloup F., Turaev V., “On reciprocity”, J. Pure Appl. Algebra, 208 (2007), 153–158, arXiv: math.AC/0512050 | DOI | MR | Zbl

[8] Fuji H., Iwaki K., Murakami H., Terashima Y., “Witten–Reshetikhin–Turaev function for a knot in Seifert manifolds”, Comm. Math. Phys., 386 (2021), 225–251, arXiv: 2007.15872 | DOI | MR | Zbl

[9] Gukov S., Marino M., Putrov P., Resurgence in complex Chern–Simons theory, arXiv: 1605.07615

[10] Gukov S., Pei D., Putrov P., Vafa C., “BPS spectra and 3-manifold invariants”, J. Knot Theory Ramifications, 29 (2020), 2040003, 85 pp., arXiv: 1701.06567 | DOI | MR | Zbl

[11] Hikami K., “On the quantum invariant for the Brieskorn homology spheres”, Internat. J. Math., 16 (2005), 661–685, arXiv: math-ph/0405028 | DOI | MR | Zbl

[12] Hikami K., “Quantum invariant, modular form, and lattice points”, Int. Math. Res. Not., 2005 (2005), 121–154, arXiv: math-ph/0409016 | DOI | MR | Zbl

[13] Hikami K., “Quantum invariants, modular forms, and lattice points. II”, J. Math. Phys., 47 (2006), 102301, 32 pp., arXiv: math.QA/0604091 | DOI | MR | Zbl

[14] Hikami K., “On the quantum invariants for the spherical Seifert manifolds”, Comm. Math. Phys., 268 (2006), 285–319, arXiv: math-ph/0504082 | DOI | MR | Zbl

[15] Lawrence R., Rozansky L., “Witten–Reshetikhin–Turaev invariants of Seifert manifolds”, Comm. Math. Phys., 205 (1999), 287–314 | DOI | MR | Zbl

[16] Lawrence R., Zagier D., “Modular forms and quantum invariants of $3$-manifolds”, Asian J. Math., 3 (1999), 93–107 | DOI | MR | Zbl

[17] Reshetikhin N., Turaev V.G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl

[18] Turaev V.G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, De Gruyter, Berlin, 2016 | DOI | MR | Zbl

[19] Wu D.H., “Resurgent analysis of $\rm SU(2)$ Chern–Simons partition function on Brieskorn spheres $\Sigma(2, 3, 6n + 5)$”, J. High Energy Phys., 2021:2 (2021), 008, 18 pp., arXiv: 2010.13736 | DOI | MR

[20] Zagier D., “Quantum modular forms”, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 659–675 | MR | Zbl