Properties of the Non-Autonomous Lattice Sine-Gordon Equation: Consistency around a Broken Cube Property
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The lattice sine-Gordon equation is an integrable partial difference equation on ${\mathbb Z}^2$, which approaches the sine-Gordon equation in a continuum limit. In this paper, we show that the non-autonomous lattice sine-Gordon equation has the consistency around a broken cube property as well as its autonomous version. Moreover, we construct two new Lax pairs of the non-autonomous case by using the consistency property.
Keywords: lattice sine-Gordon equation, integrable systems, partial difference equations.
Mots-clés : Lax pair
@article{SIGMA_2022_18_a31,
     author = {Nobutaka Nakazono},
     title = {Properties of the {Non-Autonomous} {Lattice} {Sine-Gordon} {Equation:} {Consistency} around a {Broken} {Cube} {Property}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a31/}
}
TY  - JOUR
AU  - Nobutaka Nakazono
TI  - Properties of the Non-Autonomous Lattice Sine-Gordon Equation: Consistency around a Broken Cube Property
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a31/
LA  - en
ID  - SIGMA_2022_18_a31
ER  - 
%0 Journal Article
%A Nobutaka Nakazono
%T Properties of the Non-Autonomous Lattice Sine-Gordon Equation: Consistency around a Broken Cube Property
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a31/
%G en
%F SIGMA_2022_18_a31
Nobutaka Nakazono. Properties of the Non-Autonomous Lattice Sine-Gordon Equation: Consistency around a Broken Cube Property. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a31/

[1] Adler V.E., Bobenko A.I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[2] Adler V.E., Bobenko A.I., Suris Yu.B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl

[3] Bobenko A., Kutz N., Pinkall U., “The discrete quantum pendulum”, Phys. Lett. A, 177 (1993), 399–404 | DOI | MR

[4] Bobenko A.I., Suris Yu.B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI | MR | Zbl

[5] Boll R., “Classification of 3D consistent quad-equations”, J. Nonlinear Math. Phys., 18 (2011), 337–365, arXiv: 1009.4007 | DOI | MR | Zbl

[6] Boll R., “Corrigendum: Classification of 3D consistent quad-equations”, J. Nonlinear Math. Phys., 19 (2012), 1292001, 3 pp. | DOI | MR | Zbl

[7] Capel H.W., Nijhoff F.W., Papageorgiou V.G., “Complete integrability of Lagrangian mappings and lattices of KdV type”, Phys. Lett. A, 155 (1991), 377–387 | DOI | MR

[8] Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[9] Joshi N., Nakazono N., “On the three-dimensional consistency of Hirota's discrete Korteweg–de Vries equation”, Stud Appl. Math., 147 (2021), 1409–1424, arXiv: 2102.00684 | DOI | MR | Zbl

[10] Kajiwara K., Ohta Y., “Bilinearization and Casorati determinant solution to the non-autonomous discrete KdV equation”, J. Phys. Soc. Japan, 77 (2008), 054004, 9 pp., arXiv: 0802.0757 | DOI | MR

[11] Kassotakis P., Nieszporski M., “Difference systems in bond and face variables and non-potential versions of discrete integrable systems”, J. Phys. A: Math. Theor., 51 (2018), 385203, 21 pp., arXiv: 1710.11111 | DOI | MR | Zbl

[12] Nakazono N., “Discrete Painlevé transcendent solutions to the multiplicative type discrete KdV equations”, J. Math. Phys. (to appear) | MR

[13] Nijhoff F.W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58, arXiv: nlin.SI/0110027 | DOI | MR | Zbl

[14] Nijhoff F.W., Capel H.W., Wiersma G.L., Quispel G.R.W., “Bäcklund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105 (1984), 267–272 | DOI | MR

[15] Nijhoff F.W., Quispel G.R.W., Capel H.W., “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97 (1983), 125–128 | DOI | MR

[16] Nijhoff F.W., Walker A.J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl

[17] Nimmo J.J.C., Schief W.K., “An integrable discretization of a $(2+1)$-dimensional sine-Gordon equation”, Stud. Appl. Math., 100 (1998), 295–309 | DOI | MR | Zbl

[18] Quispel G.R.W., Nijhoff F.W., Capel H.W., van der Linden J., “Linear integral equations and nonlinear difference-difference equations”, Phys. A, 125 (1984), 344–380 | DOI | MR | Zbl

[19] Tremblay S., Grammaticos B., Ramani A., “Integrable lattice equations and their growth properties”, Phys. Lett. A, 278 (2001), 319–324, arXiv: 0709.3095 | DOI | MR | Zbl

[20] Volkov A.Yu., Faddeev L.D., “Quantum inverse scattering method on a spacetime lattice”, Theoret. and Math. Phys., 92 (1992), 837–842 | DOI | MR

[21] Walker A., Similarity reductions and integrable lattice equations, Ph.D. Thesis, University of Leeds, 2001 | Zbl