Spinors in Five-Dimensional Contact Geometry
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use classical (Penrose) two-component spinors to set up the differential geometry of two parabolic contact structures in five dimensions, namely $G_2$ contact geometry and Legendrean contact geometry. The key players in these two geometries are invariantly defined directional derivatives defined only in the contact directions. We explain how to define them and their usage in constructing basic invariants such as the harmonic curvature, the obstruction to being locally flat from the parabolic viewpoint. As an application, we calculate the invariant torsion of the $G_2$ contact structure on the configuration space of a flying saucer (always a five-dimensional contact manifold).
Keywords: spinors, contact geometry, parabolic geometry.
@article{SIGMA_2022_18_a30,
     author = {Michael Eastwood and Timothy Moy},
     title = {Spinors in {Five-Dimensional} {Contact} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a30/}
}
TY  - JOUR
AU  - Michael Eastwood
AU  - Timothy Moy
TI  - Spinors in Five-Dimensional Contact Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a30/
LA  - en
ID  - SIGMA_2022_18_a30
ER  - 
%0 Journal Article
%A Michael Eastwood
%A Timothy Moy
%T Spinors in Five-Dimensional Contact Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a30/
%G en
%F SIGMA_2022_18_a30
Michael Eastwood; Timothy Moy. Spinors in Five-Dimensional Contact Geometry. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a30/

[1] Baston R.J., Eastwood M.G., The Penrose transform: its interaction with representation theory, Dover Publications, Mineola, NY, 2016 ; Reprint of the: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989 | MR | Zbl | Zbl

[2] Bryant R.L., “Two exotic holonomies in dimension four, path geometries, and twistor theory”, Complex Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., 53, Amer. Math. Soc., Providence, RI, 1991, 33–88 | DOI | MR

[3] Čap A., Slovák J., “Weyl structures for parabolic geometries”, Math. Scand., 93 (2003), 53–90, arXiv: math.DG/0001166 | DOI | MR | Zbl

[4] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[5] Eastwood M., Gover A.R., “Prolongation on contact manifolds”, Indiana Univ. Math. J., 60 (2011), 1425–1486, arXiv: 0910.5519 | DOI | MR | Zbl

[6] Eastwood M., Nurowski P., “Aerobatics of flying saucers”, Comm. Math. Phys., 375 (2020), 2335–2365, arXiv: 1810.04852 | DOI | MR | Zbl

[7] Eastwood M., Nurowski P., “Aerodynamics of flying saucers”, Comm. Math. Phys., 375 (2020), 2367–2387, arXiv: 1810.04855 | DOI | MR | Zbl

[8] Engel F., “Sur un groupe simple á quatorze paramètres”, C. R. Acad. Sci. Paris Sér. I Math., 116 (1893), 786–788

[9] Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl

[10] Landsberg J.M., Manivel L., “Legendrian varieties”, Asian J. Math., 11 (2007), 341–359, arXiv: math.AG/0407279 | DOI | MR

[11] Moy T., Legendrean and $G_2$ contact structures, Master Thesis, University of Adelaide, 2021 https://hdl.handle.net/2440/132899 | Zbl

[12] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl

[13] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR

[14] Rumin M., “Un complexe de formes différentielles sur les variétés de contact”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 401–404 | MR | Zbl

[15] Sommers P., “Space spinors”, J. Math. Phys., 21 (1980), 2567–2571 | DOI | MR