@article{SIGMA_2022_18_a30,
author = {Michael Eastwood and Timothy Moy},
title = {Spinors in {Five-Dimensional} {Contact} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a30/}
}
Michael Eastwood; Timothy Moy. Spinors in Five-Dimensional Contact Geometry. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a30/
[1] Baston R.J., Eastwood M.G., The Penrose transform: its interaction with representation theory, Dover Publications, Mineola, NY, 2016 ; Reprint of the: Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989 | MR | Zbl | Zbl
[2] Bryant R.L., “Two exotic holonomies in dimension four, path geometries, and twistor theory”, Complex Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos. Pure Math., 53, Amer. Math. Soc., Providence, RI, 1991, 33–88 | DOI | MR
[3] Čap A., Slovák J., “Weyl structures for parabolic geometries”, Math. Scand., 93 (2003), 53–90, arXiv: math.DG/0001166 | DOI | MR | Zbl
[4] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[5] Eastwood M., Gover A.R., “Prolongation on contact manifolds”, Indiana Univ. Math. J., 60 (2011), 1425–1486, arXiv: 0910.5519 | DOI | MR | Zbl
[6] Eastwood M., Nurowski P., “Aerobatics of flying saucers”, Comm. Math. Phys., 375 (2020), 2335–2365, arXiv: 1810.04852 | DOI | MR | Zbl
[7] Eastwood M., Nurowski P., “Aerodynamics of flying saucers”, Comm. Math. Phys., 375 (2020), 2367–2387, arXiv: 1810.04855 | DOI | MR | Zbl
[8] Engel F., “Sur un groupe simple á quatorze paramètres”, C. R. Acad. Sci. Paris Sér. I Math., 116 (1893), 786–788
[9] Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[10] Landsberg J.M., Manivel L., “Legendrian varieties”, Asian J. Math., 11 (2007), 341–359, arXiv: math.AG/0407279 | DOI | MR
[11] Moy T., Legendrean and $G_2$ contact structures, Master Thesis, University of Adelaide, 2021 https://hdl.handle.net/2440/132899 | Zbl
[12] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl
[13] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR
[14] Rumin M., “Un complexe de formes différentielles sur les variétés de contact”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 401–404 | MR | Zbl
[15] Sommers P., “Space spinors”, J. Math. Phys., 21 (1980), 2567–2571 | DOI | MR