@article{SIGMA_2022_18_a29,
author = {Akihiro Higashitani and Yusuke Nakajima},
title = {Deformations of {Dimer} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a29/}
}
Akihiro Higashitani; Yusuke Nakajima. Deformations of Dimer Models. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a29/
[1] Akhtar M., Coates T., Corti A., Heuberger L., Kasprzyk A., Oneto A., Petracci A., Prince T., Tveiten K., “Mirror symmetry and the classification of orbifold del Pezzo surfaces”, Proc. Amer. Math. Soc., 144 (2016), 513–527, arXiv: 1501.05334 | DOI | MR | Zbl
[2] Akhtar M., Coates T., Galkin S., Kasprzyk A.M., “Minkowski polynomials and mutations”, SIGMA, 8 (2012), 094, 707 pp., arXiv: 1212.1785 | DOI | MR | Zbl
[3] Beil C., Ishii A., Ueda K., Cancellativization of dimer models, arXiv: 1301.5410
[4] Bocklandt R., “Consistency conditions for dimer models”, Glasg. Math. J., 54 (2012), 429–447, arXiv: 1104.1592 | DOI | MR | Zbl
[5] Bocklandt R., “Generating toric noncommutative crepant resolutions”, J. Algebra, 364 (2012), 119–147, arXiv: 1104.1597 | DOI | MR | Zbl
[6] Bocklandt R., “A dimer ABC”, Bull. Lond. Math. Soc., 48 (2016), 387–451, arXiv: 1510.04242 | DOI | MR | Zbl
[7] Broomhead N., Dimer models and Calabi–Yau algebras, Mem. Amer. Math. Soc., 215, 2012, viii+86 pp., arXiv: 0901.4662 | DOI | MR
[8] Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A., “Mirror Symmetry and Fano Manifolds”, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2013, 285–300, arXiv: 1212.1722 | DOI | MR | Zbl
[9] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations. I Mutations”, Selecta Math. (N.S.), 14 (2008), 59–119, arXiv: 0704.0649 | DOI | MR | Zbl
[10] Duffin R.J., “Potential theory on a rhombic lattice”, J. Combinatorial Theory, 5 (1968), 258–272 | DOI | MR | Zbl
[11] Franco S., Hanany A., Vegh D., Wecht B., Kennaway K.D., “Brane dimers and quiver gauge theories”, J. High Energy Phys., 2006:1 (2006), 096, 48 pp., arXiv: hep-th/0504110 | DOI | MR
[12] Galkin S., Usnich A., Mutations of potentials, Preprint IPMU 10–0100, 2010
[13] Goncharov A.B., Kenyon R., “Dimers and cluster integrable systems”, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 747–813, arXiv: 1107.5588 | DOI | MR | Zbl
[14] Gulotta D.R., “Properly ordered dimers, $R$-charges, and an efficient inverse algorithm”, J. High Energy Phys., 2008:10 (2008), 014, 31 pp., arXiv: 0807.3012 | DOI | MR | Zbl
[15] Hanany A., Seong R.K., “Brane tilings and reflexive polygons”, Fortschr. Phys., 60 (2012), 695–803, arXiv: 1201.2614 | DOI | MR | Zbl
[16] Hanany A., Vegh D., “Quivers, tilings, branes and rhombi”, J. High Energy Phys., 2007:10 (2007), 029, 35 pp., arXiv: hep-th/0511063 | DOI | MR
[17] Higashitani A., Nakajima Y., “Combinatorial mutations of Newton–Okounkov polytopes arising from plabic graphs”, Adv. Stud. Pure Math. (to appear) , arXiv: 2107.04264
[18] Ilten N.O., “Mutations of Laurent polynomials and flat families with toric fibers”, SIGMA, 8 (2012), 047, 7 pp., arXiv: 1205.4664 | DOI | MR | Zbl
[19] Ishii A., Ueda K., “A note on consistency conditions on dimer models”, Higher Dimensional Algebraic Geometry, RIMS Kôkyûroku Bessatsu, B24, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 143–164, arXiv: 1012.5449 | MR
[20] Ishii A., Ueda K., “Dimer models and the special McKay correspondence”, Geom. Topol., 19 (2015), 3405–3466, arXiv: 0905.0059 | DOI | MR | Zbl
[21] Iyama O., Nakajima Y., “On steady non-commutative crepant resolutions”, J. Noncommut. Geom., 12 (2018), 457–471, arXiv: 1509.09031 | DOI | MR | Zbl
[22] Kasprzyk A., Nill B., Prince T., “Minimality and mutation-equivalence of polygons”, Forum Math. Sigma, 5 (2017), e18, 48 pp., arXiv: 1501.05335 | DOI | MR | Zbl
[23] Kennaway K.D., “Brane tilings”, Internat. J. Modern Phys. A, 22 (2007), 2977–3038, arXiv: 0706.1660 | DOI | MR | Zbl
[24] Kenyon R., “An introduction to the dimer model”, School and Conference on Probability Theory, ICTP Lect. Notes, 17, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, 267–304, arXiv: math.CO/0310326 | MR | Zbl
[25] Kenyon R., Schlenker J.M., “Rhombic embeddings of planar quad-graphs”, Trans. Amer. Math. Soc., 357 (2005), 3443–3458, arXiv: math-ph/0305057 | DOI | MR | Zbl
[26] Mercat C., “Discrete Riemann surfaces and the Ising model”, Comm. Math. Phys., 218 (2001), 177–216, arXiv: 0909.3600 | DOI | MR | Zbl
[27] Nakajima Y., “Mutations of splitting maximal modifying modules: the case of reflexive polygons”, Int. Math. Res. Not., 2019 (2019), 470–550, arXiv: 1601.05203 | DOI | MR | Zbl
[28] Nakajima Y., “Semi-steady non-commutative crepant resolutions via regular dimer models”, Algebr. Comb., 2 (2019), 173–195, arXiv: 1608.05162 | DOI | MR | Zbl
[29] Rietsch K., Williams L., “Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians”, Duke Math. J., 168 (2019), 3437–3527, arXiv: 1712.00447 | DOI | MR | Zbl
[30] Schrijver A., Theory of linear and integer programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley Sons, Ltd., Chichester, 1986 | MR | Zbl
[31] Ueda K., Yamazaki M., “A note on dimer models and McKay quivers”, Comm. Math. Phys., 301 (2011), 723–747, arXiv: math.AG/0605780 | DOI | MR | Zbl