A Characterisation of Smooth Maps into a Homogeneous Space
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize Cartan's logarithmic derivative of a smooth map from a manifold into a Lie group $G$ to smooth maps into a homogeneous space $M=G/H$, and determine the global monodromy obstruction to reconstructing such maps from infinitesimal data. The logarithmic derivative of the embedding of a submanifold $\Sigma \subset M$ becomes an invariant of $\Sigma $ under symmetries of the “Klein geometry” $M$ whose analysis is taken up in [SIGMA 14 (2018), 062, 36 pages, arXiv:1703.03851].
Keywords: homogeneous space, subgeometry, Cartan geometry, Klein geometry, logarithmic derivative, Darboux derivative, differential invariants.
Mots-clés : Lie algebroids
@article{SIGMA_2022_18_a28,
     author = {Anthony D. Blaom},
     title = {A {Characterisation} of {Smooth} {Maps} into a {Homogeneous} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a28/}
}
TY  - JOUR
AU  - Anthony D. Blaom
TI  - A Characterisation of Smooth Maps into a Homogeneous Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a28/
LA  - en
ID  - SIGMA_2022_18_a28
ER  - 
%0 Journal Article
%A Anthony D. Blaom
%T A Characterisation of Smooth Maps into a Homogeneous Space
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a28/
%G en
%F SIGMA_2022_18_a28
Anthony D. Blaom. A Characterisation of Smooth Maps into a Homogeneous Space. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a28/

[1] Blaom A.D., “Lie algebroid invariants for subgeometry”, SIGMA, 14 (2018), 062, 36 pp., arXiv: 1703.03851 | DOI | MR | Zbl

[2] Burstall F.E., Calderbank D.M.J., “Submanifold geometry in generalized flag manifolds”, Rend. Circ. Mat. Palermo (2) Suppl., 72 (2004), 13–41 | MR | Zbl

[3] Burstall F.E., Calderbank D.M.J., Conformal submanifold geometry I–III, arXiv: 1006.5700

[4] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999 | MR | Zbl

[5] Crainic M., Fernandes R.L., Ann. of Math., 157 (2003), Integrability of Lie brackets, arXiv: math.DG/0105033 | DOI | MR

[6] Crainic M., Fernandes R.L., Lectures on Poisson Geometry, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011, Lectures on integrability of Lie brackets, arXiv: math.DG/0611259 | DOI | MR | Zbl

[7] Dufour J.P., Zung N.T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl

[8] Ivey T.A., Landsberg J.M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[9] Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[10] Sharpe R.W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR