Mots-clés : Berezin quantization.
@article{SIGMA_2022_18_a27,
author = {Rukmini Dey and Kohinoor Ghosh},
title = {Pullback {Coherent} {States,} {Squeezed} {States} and {Quantization}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a27/}
}
Rukmini Dey; Kohinoor Ghosh. Pullback Coherent States, Squeezed States and Quantization. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a27/
[1] Berceanu S., Schlichenmaier M., “Coherent state embeddings, polar divisors and Cauchy formulas”, J. Geom. Phys., 34 (2000), 336–358, arXiv: math.DG/9903105 | DOI | MR | Zbl
[2] Berezin F.A., “Quantization”, Math. USSR Izv., 8 (1974), 1109–1165 | DOI | MR
[3] Boggess A., CR manifolds and the tangential Cauchy–Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991 | MR | Zbl
[4] Doyle P.H., Hocking J.G., “A decomposition theorem for $n$-dimensional manifolds”, Proc. Amer. Math. Soc., 13 (1962), 469–471 | DOI | MR | Zbl
[5] Kirwin W.D., “Coherent states in geometric quantization”, J. Geom. Phys., 57 (2007), 531–548, arXiv: math.SG/0502026 | DOI | MR | Zbl
[6] Klauder J.R., Skagerstam B.S. (Editors), Coherent states: applications in physics and mathematical physics, World Scientific Publishing Co., Singapore, 1985 | DOI | MR | Zbl
[7] Kostant B., “Orbits and quantization theory”, Actes du Congrès International des Mathématiciens (Nice, 1970), v. 2, 1971, 395–400 | MR | Zbl
[8] Nair V.P., Quantum field theory: a modern perspective, Graduate Texts in Contemporary Physics, Springer, New York, 2005 | DOI | MR | Zbl
[9] Nakahara M., Geometry, topology and physics, Graduate Student Series in Physics, 2nd ed., Institute of Physics, Bristol, 2003 | DOI | MR | Zbl
[10] Odzijewicz A., “Coherent states and geometric quantization”, Comm. Math. Phys., 150 (1992), 385–413 | DOI | MR | Zbl
[11] Perelomov A., Generalized coherent states and their applications, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl
[12] Radcliffe J.M., “Some problems of coherent spin states”, J. Phys. A: Gen. Phys., 4 (1971), 313–323 | DOI | MR
[13] Rawnsley J.H., “Coherent states and Kähler manifolds”, Quart. J. Math. Oxford, 28 (1977), 403–415 | DOI | MR | Zbl
[14] Schnabel R., “Squeezed states of light and their applications in laser interferometers”, Phys. Rep., 684 (2017), 1–51, arXiv: 1611.03986 | DOI | MR | Zbl
[15] Spera M., “On Kählerian coherent states”, Geometry, Integrability and Quantization (Varna, 1999), Coral Press Sci. Publ., Sofia, 2000, 241–256 | MR | Zbl
[16] Spera M., “On some geometric aspects of coherent states”, Coherent states and their applications, Springer Proc. Phys., 205, Springer, Cham, 2018, 157–172 | DOI | MR | Zbl
[17] Woodhouse N., Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1980 | MR
[18] Yaffe L.G., “Large $N$ limits as classical mechanics”, Rev. Modern Phys., 54 (1982), 407–435 | DOI | MR