Twistor Theory of Dancing Paths
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a path geometry on a surface $\mathcal{U}$, we construct a causal structure on a four-manifold which is the configuration space of non-incident pairs (point, path) on $\mathcal{U}$. This causal structure corresponds to a conformal structure if and only if $\mathcal{U}$ is a real projective plane, and the paths are lines. We give the example of the causal structure given by a symmetric sextic, which corresponds on an ${\rm SL}(2,{\mathbb R})$-invariant projective structure where the paths are ellipses of area $\pi$ centred at the origin. We shall also discuss a causal structure on a seven-dimensional manifold corresponding to non-incident pairs (point, conic) on a projective plane.
Keywords: path geometry, twistor theory
Mots-clés : causal structures.
@article{SIGMA_2022_18_a26,
     author = {Maciej Dunajski},
     title = {Twistor {Theory} of {Dancing} {Paths}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a26/}
}
TY  - JOUR
AU  - Maciej Dunajski
TI  - Twistor Theory of Dancing Paths
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a26/
LA  - en
ID  - SIGMA_2022_18_a26
ER  - 
%0 Journal Article
%A Maciej Dunajski
%T Twistor Theory of Dancing Paths
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a26/
%G en
%F SIGMA_2022_18_a26
Maciej Dunajski. Twistor Theory of Dancing Paths. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a26/

[1] Atiyah M., Dunajski M., Mason L.J., “Twistor theory at fifty: from contour integrals to twistor strings”, Proc. A, 473 (2017), 20170530, 33 pp., arXiv: 1704.07464 | DOI | MR | Zbl

[2] Atiyah M.F., Hitchin N.J., Singer I.M., “Self-duality in four-dimensional Riemannian geometry”, Proc. A, 362 (1978), 425–461 | DOI | MR | Zbl

[3] Bor G., Hernández Lamoneda L., Nurowski P., “The dancing metric, $G_2$-symmetry and projective rolling”, Trans. Amer. Math. Soc., 370 (2018), 4433–4481 | DOI | MR | Zbl

[4] Bryant R., “Élie Cartan and geometric duality”, Conférences données à l'Institut Élie Cartan, Institut Élie Cartan, Université de Nancy, 1999, 5–20 | Zbl

[5] Bryant R., Dunajski M., Eastwood M., “Metrisability of two-dimensional projective structures”, J. Differential Geom., 83 (2009), 465–499, arXiv: 0801.0300 | DOI | MR

[6] Cartan E., “Les espaces généralises et l'intégration de certaines classes d'équations différentielles”, C. R. Acad. Sci. Paris, 206 (1938), 1689–1693

[7] Casey S., Dunajski M., Tod P., “Twistor geometry of a pair of second order ODEs”, Comm. Math. Phys., 321 (2013), 681–701, arXiv: 1203.4158 | DOI | MR | Zbl

[8] Dunajski M., The nonlinear graviton as an integrable system, Ph.D. Thesis, Oxford University, 1998

[9] Dunajski M., Mettler T., “Gauge theory on projective surfaces and anti-self-dual Einstein metrics in dimension four”, J. Geom. Anal., 28 (2018), 2780–2811, arXiv: 1509.04276 | DOI | MR | Zbl

[10] Grossman D.A., “Torsion-free path geometries and integrable second order ODE systems”, Selecta Math. (N.S.), 6 (2000), 399–442 | DOI | MR | Zbl

[11] Holland J., Sparling G., Causal geometries and third-order ordinary differential equations, arXiv: 1001.0202

[12] Holland J., Sparling G., Causal geometries, null geodesics, and gravity, arXiv: 1106.5254

[13] Kryński W., Makhmali O., “The Cayley cubic and differential equations”, J. Geom. Anal., 31 (2021), 6219–6273, arXiv: 1901.00958 | DOI | MR | Zbl

[14] Liouville R., “Mémoire sur les invariants de certaines équations différentielles et sur leurs applications”, J. l'Éc. Polit., 59 (1889), 7–76

[15] Makhmali O., Differential geometric aspects of causal structures, Ph.D. Thesis, McGill University, 2017 | MR

[16] Mason L.J., Woodhouse N.M.J., “Integrability, self-duality, and twistor theory”, London Mathematical Society Monographs, New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR

[17] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl

[18] Tresse A., Détermination des invariants ponctuels de l'équation différentielle ordinaire de second ordre $y'' = \omega(x,y,y')$, Hirzel, Leipzig, 1896

[19] Ward R.S., “Self-dual space-times with cosmological constant”, Comm. Math. Phys., 78 (1980), 1–17 | DOI | MR | Zbl

[20] Ward R.S., “Integrable and solvable systems, and relations among them”, Philos. Trans. Roy. Soc. London Ser. A, 315 (1985), 451–457 | DOI | MR | Zbl