Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the cohomology of $\mathfrak{sl}_3(k)$ over an algebraically closed field $k$ of characteristic $p>3$ with coefficients in simple modules and Weyl modules. We also give descriptions of the corresponding cohomology of $\mathfrak{gl}_3(k)$.
Keywords: Lie algebra, cohomology.
Mots-clés : simple module
@article{SIGMA_2022_18_a25,
     author = {Sherali Sh. Ibraev},
     title = {Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with {Coefficients} in {Simple} {Modules} and {Weyl} {Modules} in {Positive} {Characteristics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a25/}
}
TY  - JOUR
AU  - Sherali Sh. Ibraev
TI  - Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a25/
LA  - en
ID  - SIGMA_2022_18_a25
ER  - 
%0 Journal Article
%A Sherali Sh. Ibraev
%T Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a25/
%G en
%F SIGMA_2022_18_a25
Sherali Sh. Ibraev. Cohomology of $\mathfrak{sl}_3$ and $\mathfrak{gl}_3$ with Coefficients in Simple Modules and Weyl Modules in Positive Characteristics. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a25/

[1] Andersen H.H., Jantzen J.C., “Cohomology of induced representations for algebraic groups”, Math. Ann., 269 (1984), 487–525 | DOI | MR | Zbl

[2] Bouarroudj S., Grozman P., Lebedev A., Leites D., Derivations and central extensions of simple modular Lie algebras and superalgebras, arXiv: 1307.1858

[3] Bouarroudj S., Grozman P., Leites D., Deformations of symmetric simple modular Lie superalgebras, arXiv: 0807.3054

[4] Braden B., “Restricted representations of classical Lie algebras of types $A_{2}$ and $B_{2}$”, Bull. Amer. Math. Soc., 73 (1967), 482–486 | DOI | MR | Zbl

[5] Carter R.W., Lusztig G., “On the modular representations of the general linear and symmetric groups”, Math. Z., 136 (1974), 193–242 | DOI | MR | Zbl

[6] Chebochko N.G., “Deformations of classical Lie algebras with homogeneous root system in characteristic two. I”, Sb. Math., 196 (2005), 1371–1402 | DOI | MR | Zbl

[7] Chevalley C., Eilenberg S., “Cohomology theory of Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 63 (1948), 85–124 | DOI | MR | Zbl

[8] Cline E., Parshall B., Scott L., van der Kallen W., “Rational and generic cohomology”, Invent. Math., 39 (1977), 143–163 | DOI | MR | Zbl

[9] Dzhumadil'daev A.S., “On the cohomology of modular Lie algebras”, Math. USSR-Sb., 47 (1984), 127–143 | DOI | Zbl

[10] Dzhumadil'daev A.S., “Abelian extensions of modular Lie algebras”, Algebra Logic, 24 (1985), 1–7 | DOI | MR | Zbl

[11] Dzhumadil'daev A.S., Ibraev Sh.Sh., “Nonsplit extensions of modular Lie algebras of rank 2”, Homology Homotopy Appl., 4 (2002), 141–163 | DOI | MR | Zbl

[12] Farnsteiner R., “Cohomology groups of reduced enveloping algebras”, Math. Z., 206 (1991), 103–117 | DOI | MR | Zbl

[13] Franklin J., “Homomorphisms between Verma modules in characteristic $p$”, J. Algebra, 112 (1988), 58–85 | DOI | MR | Zbl

[14] Friedlander E.M., Parshall B.J., “Modular representation theory of Lie algebras”, Amer. J. Math., 110 (1988), 1055–1093 | DOI | MR | Zbl

[15] Hazewinkel M., “A duality theorem for the cohomology of Lie algebras”, Math. USSR-Sb., 12 (1970), 638–644 | DOI | MR

[16] Hochschild G., “Cohomology of restricted Lie algebras”, Amer. J. Math., 76 (1954), 555–580 | DOI | MR | Zbl

[17] Humphreys J.E., Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, 326, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[18] Ibraev Sh.Sh., Turbayev B.T., “Cohomology for the Lie algebra of type $A_2$ over a field of characteristic 2”, Sib. Electron. Math. Rep., 18 (2021), 729–739 | DOI | MR | Zbl

[19] Ibrayeva A.A., Ibraev Sh.Sh., Yeshmurat G.K., “Cohomology of simple modules for $\mathfrak{sl}_3(k)$ in characteristic $3$”, Bull. Karaganda Univ. Math. Ser., 2021, no. 3, 36–43, arXiv: 2108.13652 | DOI

[20] Jantzen J.C., “Weyl modules for groups of Lie type”, Finite Simple Groups II, University of Durham, 1980, 291–300 | Zbl

[21] Jantzen J.C., “First cohomology groups for classical Lie algebras”, Representation Theory of Finite Groups and Finite-Dimensional Algebras (Bielefeld, 1991), Progr. Math., 95, Birkhäuser, Basel, 1991, 289–315 | DOI | MR

[22] Jantzen J.C., Representations of algebraic groups, Mathematical Surveys and Monographs, 107, 2nd ed., Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[23] Permyakov D.S., “Derivations of classical Lie algebras over a field of characteristic $2$”, Vestnik Lobachevsky State Univ. Nizhni Novgorod Ser. Math., 1 (1978), 123–134 {http://www.vestnik.unn.ru/en/nomera?anum=1455} http://www.vestnik.unn.ru/en/nomera?anum=1455

[24] Rudakov A.N., “Dimensions of certain irreducible representations of semisimple Lie algebras of classical type over fields of finite characteristic”, Trudy Sem. Petrovsk., 3, 1978, 147–160 | MR | Zbl

[25] Shu B., Yao Y.-F., “On cohomology of a class of nonclassical restricted simple Lie algebras”, J. Algebra Appl., 16 (2017), 1750157, 13 pp. | DOI | MR | Zbl

[26] Sullivan J.B., “The second Lie algebra cohomology group and Weyl modules”, Pacific J. Math., 86 (1980), 321–326 | DOI | MR | Zbl